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Abstract: Emissions of CO2 and CH4 from freshwater reservoirs constitute a globally 

significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain 

with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal 

variation in surface diffusion of CO2 and CH4 from Douglas Lake, a hydropower reservoir 

in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 

2010 indicated that surface diffusions ranged from 236 to 18,806 mg·m−2·day−1 for CO2 

and 0 to 0.95 mg·m−2·day−1 for CH4. Next, we developed statistical models using spatial 

and physicochemical variables to predict surface diffusions of CO2 and CH4. Models 

explained 22.7% and 20.9% of the variation in CO2 and CH4 diffusions respectively, and 

identified pH, temperature, dissolved oxygen, and Julian day as the most informative 

predictors. These findings provide baseline estimates of GHG emissions from a reservoir in 

eastern temperate North America, a region for which estimates of reservoir GHGs 
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emissions are limited. Our statistical models effectively characterized non-linear and 

threshold relationships between physicochemical predictors and GHG emissions. Further 

refinement of such modeling approaches will aid in predicting current GHG emissions 

from unsampled reservoirs and forecasting future GHG emissions. 

Keywords: climate change; CH4; CO2; hydropower; random forests model; reservoir 

 

1. Introduction 

Hydropower is an important renewable component of national energy portfolios in many countries. 

Although hydropower traditionally has been considered to be carbon neutral [1], recent investigations 

suggest that the reservoirs created by large hydropower dams emit greenhouse gases (GHG), primarily 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) [2,3]. For example, Barros et al. [4] 

estimated that hydropower reservoirs release to the atmosphere 48 Tg of carbon as CO2 and 3 Tg of 

carbon as CH4 each year, based on extrapolation of emissions estimates from 85 globally distributed 

hydropower reservoirs. This carbon emission rate comprises 4% of the total net carbon emitted from 

the surfaces of all natural and human-created freshwater bodies and therefore represents a significant 

component of the global carbon cycle [4]. Emissions of GHGs from reservoirs occur via three main 

pathways. First, accumulation of dissolved GHGs in the water column, primarily originating from 

microbial metabolism, leads to passive diffusion from the reservoir surface to the atmosphere [2,5]. 

Second, gas bubble ebullition from the sediments of the reservoir also contribute to GHG emissions, 

particularly in the form CH4 from shallow areas of reservoirs [6–9]. More recent investigations have 

documented the ebullition of microbubbles generated from oxic production of CH4 in the water 

column is also a source of GHG emission from reservoirs [10]. Third, the rapid decrease in pressure as 

water leaves the reservoir, passes through the hydroelectric turbine, and is expelled into the tailrace 

allows GHGs to diffuse into the atmosphere. The relative contribution of GHGs from these three 

pathways varies from reservoir to reservoir and across seasons, and depends on various factors related 

to reservoir morphometry, age, and dam operation [3,4,11]. Nevertheless, surface diffusion often is the 

dominant contributor of GHG emissions [3,8,11], and is the focus of this study. 

Many environmental factors contribute to the spatial and temporal variation in GHG surface 

diffusion. From a spatial perspective, surface diffusion of GHGs varies among reservoirs distributed 

along broad geographic gradients. For example, mean annual air temperature is a key factor affecting 

GHG emissions, with low-latitude tropical reservoirs typically emitting GHGs at greater rates per unit 

area than high-latitude temperate and boreal reservoirs [4]. Additionally, nutrient loading from the 

upstream catchment also contributes to variation in GHG emissions among reservoirs receiving 

drainage from agricultural versus natural land cover [3]. Emissions of GHGs also vary along 

environmental gradients within reservoirs. For example, ebullition occurs most often in shallow areas 

where bubbles remain intact. Bubbles originating from deeper areas can dissolve in the water column 

before reaching the reservoir surface resulting in greater passive diffusion [6–8,12]. Longitudinal 

position within the reservoir is also important, with shallow river delta habitats in the upper reservoir 

typically producing more GHGs than deeper reservoir habitats nearer the dam [3]. From a temporal 
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perspective, GHG emissions vary among years and among seasons within a year. Emissions of GHGs 

correlate negatively with reservoir age because new reservoirs generally contain larger pools of labile 

organic carbon from inundated terrestrial vegetation relative to older reservoirs [13]. Emissions of 

GHGs also vary within a year due to seasonal changes in temperature, nutrient availability, hydrology, 

and stratification-turnover dynamics [3,14]. 

Identifying the spatial and temporal drivers of GHG emissions within and among reservoirs is an 

important step in developing a predictive framework that can be used to forecast future GHG 

emissions of existing reservoirs as well as those reservoirs currently under construction or planned for 

construction. The ability to identify environmental correlates of GHG emissions requires data on GHG 

emissions from environments and geographic regions that have not previously been studied.  

In particular, many of the investigations of GHG emissions by reservoirs have taken place in tropical 

or boreal regions [4,15]. Fewer studies have been undertaken in reservoirs at mid-latitudes (but  

see [3,16,17]) even though approximately 30% of all reservoirs occur at these latitudes throughout the 

world [4]. Also lacking are studies of seasonal variation in GHG emissions along environmental 

gradients within a single reservoir (but see [3]) [12]. 

The overall objective of this study was to evaluate spatial and temporal variation in GHG emissions 

from Douglas Lake, a hydropower reservoir in the southeastern United States. First, we measured 

fluxes of CO2 and CH4 from the reservoir to the atmosphere via surface diffusion. Measurements were 

made across seasons and throughout the reservoir to document spatial and temporal variation in 

diffusion rates. Second, we developed statistical models to quantitatively characterize environmental 

correlates of CO2 and CH4 surface diffusion in both space and time. To do this, we used a  

recently-developed statistical algorithm, Random Forests [18], which can identify non-linear and 

threshold relationships between predictor variables and the response variable. By developing statistical 

models, our goal was to elucidate environmental drivers of variation in CO2 and CH4 emissions within 

a reservoir. Such statistical models can be used to predict GHG emissions in other unsampled 

reservoirs in this geographic region, and possibly forecast GHG emissions following future 

environmental changes such as increased nutrient loading or rising air temperatures. 

2. Materials and Methods 

2.1. Study Site and Field Sampling 

Douglas Lake is located in eastern Tennessee and was formed in 1943 following the construction of 

Douglas Dam on the French Broad River in the upper Tennessee River basin (Figure 1). Douglas Dam 

is 61 m in height and 520 m wide and is equipped with four Francis-type hydropower turbines with a 

total electricity generation capacity of 111 megawatts. Douglas Lake covers 115 km2 and is managed 

by the Tennessee Valley Authority (TVA) primarily for flood storage and hydroelectric generation, but 

it is also used extensively for recreational activities [19]. The reservoir is a warm monomictic system 

and pool elevation fluctuates seasonally by approximately 13.4 m, with maximum drawdown 

occurring from December through February. Water quality deficiencies include low concentrations of 

dissolved oxygen, particularly in the hypolimnion during summer stratification [20]. 
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Figure 1. Locations of 13 study sites on Douglas Lake in eastern Tennessee, USA where 

CO2 and CH4 emissions and physicochemical variables were measured monthly from 

January through November 2010 (except February). Sites were distributed among lotic 

upstream (U1–U3), lentic main lake (M1–M6), and lentic cove (C1–C4) locations. 

Field measurements were made monthly at 13 sites from January to November 2010, excluding 

February (Figure 1). During each monthly sampling campaign, all 13 sites were sampled over four or 

fewer consecutive days between the hours of 800 and 1800. Sites were distributed among six lentic 

main lake locations within Douglas Lake placed at increasing distances from Douglas Dam (M1–M6); 

four lentic cove locations within Douglas Lake placed at increasing distances from Douglas Dam  

(C1–C4), and three lotic locations on the Nolichucky River (U1), French Broad River (U2), and  

Pigeon River (U3) upstream of Douglas Lake. This distribution of sites captured spatial variation in 

environmental characteristics known to affect GHG production and surface diffusion [3,9,12]. 

2.2. CO2 and CH4 Emissions and Physicochemical Variables 

We estimated CO2 and CH4 emissions using the thin boundary layer (TBL) method following  

a standard protocol outlined by the International Hydropower Association [20]. This method uses 

GHG concentration gradients at the water surface and semi-empirical equations to indirectly estimate 

GHG flux. Greenhouse gas diffusion estimates using the TBL method can be less accurate under 

certain conditions than direct measurement of diffusion using floating chambers [21], but still can 

provide useful estimates of GHG diffusion, particularly when a large number of locations and/or open 

windy lake locations are sampled [22]. Water samples were collected from within 0.5 m of the 

reservoir surface in 125-mL serum bottles sealed with butyl stoppers and preserved with potassium 

chloride (KCl). Samples were returned to the laboratory where headspace gas chromatography was 

used to measure the concentrations of dissolved CO2 and CH4 [23]. Two or three water samples were 

collected from each site on each sampling date, and the mean concentrations of gases in these 

subsamples were calculated and used in the following TBL calculations to estimate surface diffusions. 
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Gas diffusion from the water surface to the atmosphere can be estimated as the product of the 

concentration gradient between the surface water and air and a gas exchange coefficient (k) for CO2 

(Equation (1)) and CH4 (Equation (2)). CO 	diffusion = water[CO ] − air[CO ] × k  (1)CH 	diffusion = water[CH ] − air[CH ] × k  (2)

Greenhouse gas concentrations from the water surface were calculated as the partial pressure of the 

gas (CO2 or CH4), which require data on water salinity, water temperature, air temperature, and 

atmospheric pressure. Gas exchange coefficients were calculated using the Schmidt number for each 

gas (CO2 or CH4), wind speed, and temperature. Air and water temperatures were measured at each 

site when water samples were collected. Wind velocity and atmospheric pressure measurements were 

acquired from a National Oceanic and Atmospheric Administration weather station located 34 km east 

of Douglas Dam [24]. Concentrations of CO2 and CH4 in the atmosphere were assumed to be 388 ppm 

and 1.8 ppm, respectively, based on recent global estimates [25]. We calculated monthly estimates of 

reservoir-wide diffusion of CO2 and CH4 by multiplying reservoir surface area (115 km2) by the  

area-specific diffusion rates averaged across the ten lentic sites (M1–M6 and C1–C4). These reservoir-wide 

estimates assume that the ten lentic sampling locations capture the spatial variation in CO2 and CH4 

surface diffusion; this method has been used in previous estimates of reservoir-wide GHG emissions [3]. 

In addition to GHG emissions, measurements of temperature, dissolved oxygen (O2), conductivity, 

and pH were made from the surface and bottom of the water column on each sampling date from  

each site using a multiparameter data sonde (Model 6820 V2; YSI Inc.; Yellow Springs, OH, USA). 

Additional water samples were collected from the surface and bottom of the water column on each 

sampling date from each site using a van Dorn water sampler; then samples were analyzed for 

dissolved organic carbon (DOC), ammonium (NH4
+), nitrate (NO3

−), soluble reactive phosphorus 

(SRP), and total phosphorus (TP) concentrations using standard methods [18]. 

2.3. Data Analysis 

We calculated sample averages and 95% confidence intervals for surface and bottom values of 

physicochemical variables and surface concentrations of CO2 and CH4 for each month (sites pooled) 

and for each site (months pooled) to summarize the spatial and temporal variation in GHG flux from 

Douglas Lake. We also calculated sample averages and 95% confidence intervals for surface 

concentrations and diffusive fluxes of CO2 and CH4 for each month (sites pooled) and for each site 

(months pooled) to summarize and visualize the spatial and temporal variation in GHG flux from 

Douglas Lake. 

We developed statistical models to identify environmental correlates of CO2 and CH4 surface 

diffusions across the reservoir and among seasons. The Random Forests algorithm generates a regression 

tree using a random subset of the observations (i.e., samples) and environmental predictor variables. 

This procedure is repeated many times (i.e., 1000 times for the present analysis) and the response 

variable is predicted using a composite of all regression trees (i.e., the forest). This recently-developed 

statistical algorithm is useful for characterizing nonlinear relationships between predictor variables and 

the response variable, modeling high order and complex interactions among predictor variables, and 
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accommodating missing values of predictor variables [26]. These properties make Random Forests 

models more accurate and informative than more traditional techniques (e.g., multiple linear 

regression) when modeling complex ecological responses [26]. We screened a total of 23 

environmental predictor variables measured during field sampling for use as predictors in the random 

forest models. We calculated pairwise correlation coefficients of all 23 variables and removed highly 

correlated (R >0.7) variables, retaining the variable from each pair that was hypothesized to be more 

causally linked to GHG fluxes (e.g., SRP instead of TP). We also removed CO2 and CH4 

concentrations, wind speed, and surface water temperature because these variables are used directly in 

the TBL equations and would artificially inflate model performance if included as predictors. Sixteen 

variables were retained as predictors in the Random Forests models (Table 1). These variables were 

used to develop separate models for CO2 and CH4. Model performance was evaluated as the percent of 

variance explained, and statistical significance was evaluated by testing for linear relationships 

between model-predicted and observed GHG fluxes. We quantified the importance of predictor 

variables as the decrease in node impurity standardized from zero to one [26]. Lastly, we created 

partial dependence plots to visualize the independent effects of each of the five most important 

predictor variables for the CO2 and CH4. Partial dependence plots are useful for identifying non-linear 

or threshold relationships between predictors and the response. Because Random Forests models are a 

composite of many separate regression trees built from a random subset of the predictors, partial 

dependence plots can effectively display the relationship between the response and a single predictor 

variable, while factoring out the effects of the remaining predictor variables [26]. Statistical analyses 

were performed in the R programming environment using the randomForest library [27]. 

Table 1. Importance of 16 environmental predictor variables in explaining variation in 

surface diffusion of CO2 and CH4 based on thin boundary layer (TBL) estimation at six 

lentic main lake sites (M1–M6), four lentic cove sites (C1–C4), and three upstream lotic sites 

(U1–U3). Variable importance was measured as the decrease in node impurity of each 

Random Forests model with values standardized from 0 to 1. 

Predictor CO2 CH4 
Julian day 0.49 0.35 

Longitudinal position 0.33 0.01 
Depth 0.06 0 

O2 bottom concentration 0 0.12 
DOC bottom concentration 0.39 0.17 
NH4

+ bottom concentration 0.29 0.11 
NO3

– bottom concentration 0.11 0.07 
pH bottom 0.2 0.05 

SRP bottom 0.03 0.16 
Temperature bottom 0.08 1 

O2 surface concentration 0.28 0.83 
DOC surface concentration 0.3 0.36 
NH4

+ surface concentration 0.01 0.03 
NO3

– surface concentration 0.27 0.11 
pH surface 1 0.59 

SRP surface 0.13 0.17 
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3. Results and Discussion 

3.1. Physicochemical Conditions of Douglas Lake 

Physicochemical factors (averaged across seasons) varied across sampling sites at Douglas Lake 

(Table 2). Main lake sampling sites increased in depth from a seasonal average of 2.5 m in the  

upstream-most site (M1) to 25.2 m in the downstream-most site (M6). Upstream lentic sites were the 

shallowest (~1.5 m) and cove sites were of moderate depths, ranging from 4.8 to 15.7 m. Surface 

temperatures averaged across seasons were generally consistent across sites, ranging from 20.7 °C to 

27.6 °C. Bottom temperatures averaged across seasons were lowest in the deep downstream-most site 

(M6). Likewise, O2 concentrations at the surface were consistently high across sites (7.4 to 10.0 mg·L−1), 

whereas bottom O2 concentrations varied across sites (3.1 to 8.9 mg·L−1) and were lowest in the 

downstream-most main lake sites due to thermal stratification during the summer. DOC concentrations 

were consistent across sites at the surface (2.1 to 4.9 mg·L−1), but were more variable across sites at 

the bottom (1.7 to 6.9 mg·L−1). Concentrations of NH4
+, NO3

−, SRP, and TP as well as pH varied 

across sites, but did not show consistent upstream-to-downstream, lentic-to-lotic, or main  

lake-to-cove trends. 

Physicochemical factors (averaged across sites) varied seasonally (Table 3). Depth at all sites 

except the lotic upstream sites peaked in the spring, declined steadily through the summer, and were 

lowest in the winter due to management of pool elevation by the TVA. Mean monthly surface 

temperatures ranged from 3.2 °C in January to 29.6 °C in July. Bottom temperatures showed a similar 

seasonal trend, but the maximum temperature in August (25.7 °C) was lower than surface temperature 

during that month due to thermal stratification. Concentrations of O2 at the surface ranged from  

7.5 mg·L−1 in August to 12.7 mg·L−1 in March. At the bottom of the water column, O2 concentrations 

ranged from 3.0 mg·L−1 in August to 12.9 mg·L−1 in March. DOC at the surface and at the bottom 

ranged from 1.3 to 3.6 mg·L−1 from January to September, but were higher in October and November 

(range of 6.8 to 7.1 mg·L−1). Surface NH4
+ concentrations ranged from 13.1 to 50.1 µg N·L−1 across 

months, but did not exhibit noticeable seasonal cycles. Bottom NH4
+ concentrations, bottom and 

surface concentrations of NO3−, and bottom and surface concentrations of SRP were variable across 

months but did not exhibit noticeable seasonal cycles. 
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Table 2. Spatial variation in physicochemical variables of Douglas Lake. Values are sample averages with 95% confidence intervals in 

parentheses. Confidence intervals for sample averages represented by a single sample (i.e., no seasonal replication) are denoted with NAs. 

Variable M1 M2 M3 M4 M5 M6 C1 C2 C3 C4 U1 U2 U3 

Depth (m) 
2.5 7.9 9.5 11.8 20.0 25.2 10.1 15.7 4.8 11.8 1.5 1.5 1.5 

(0.3) (1.5) (2.3) (2.3) (3.3) (2.5) (2.4) (1.6) (1.9) (2.7) (NA) (NA) (NA) 
Surface 

temperature (°C) 
27.6 27.6 23.6 23.2 23.1 20.7 23.0 23.0 20.8 22.0 23.7 20.9 20.3 
(2.3) (1.9) (4.9) (5.0) (4.7) (5.9) (5.1) (4.8) (5.6) (6.4) (4.4) (4.6) (3.8) 

Bottom 
temperature (°C) 

26.7 24.8 20.3 19.8 16.7 14.5 19.0 18.9 20.1 17.9 23.7 20.9 20.3 
(2.8) (1.4) (4.3) (3.6) (4.1) (4.2) (4.5) (4.7) (5.4) (5.0) (4.4) (4.6) (3.8) 

Surface O2 
(mg·L−1) 

7.4 7.9 10.0 9.6 9.5 9.5 9.6 9.5 9.7 10.0 8.9 8.6 8.8 
(1.4) (1.0) (1.5) (1.0) (1.3) (1.4) (1.5) (1.5) (1.5) (1.9) (1.5) (0.9) (0.9) 

Bottom O2 
(mg·L−1) 

6.8 5.0 4.0 3.1 4.8 4.1 4.6 5.6 8.8 5.9 8.9 8.6 8.8 
(0.6) (2.4) (2.8) (2.2) (2.7) (2.5) (3.1) (2.5) (2.1) (3.4) (1.5) (0.9) (0.9) 

Surface pH 
8.16 8.06 8.55 8.47 8.46 8.00 8.63 8.37 7.96 8.33 8.27 7.96 8.2 
(NA) (0.44) (0.42) (0.45) (0.48) (0.31) (0.22) (0.54) (0.29) (0.36) (0.43) (0.43) (0.35) 

Bottom pH 
8.13 7.61 7.63 7.33 7.44 7.28 7.81 8.07 7.88 7.81 8.27 7.96 8.20 
(NA) (0.31) (0.25) (0.42) (0.28) (0.20) (0.36) (0.26) (0.17) (0.37) (0.43) (0.43) (0.35) 

Surface DOC 
(mg·L−1) 

2.1 2.6 2.8 3.3 3.0 2.8 3.4 3.1 2.9 2.7 4.6 3.4 4.9 
(0.5) (0.4) (1.1) (1.1) (1.3) (1.2) (1.4) (1.3) (1.2) (0.9) (3.0) (1.4) (1.7) 

Bottom DOC 
(mg·L−1) 

2.3 2.5 4.3 4.0 6.7 1.7 6.9 5.0 1.8 5.8 4.6 3.4 4.9 
(0.4) (0.9) (4.7) (2.8) (1.6) (NA) (NA) (3.6) (0.4) (NA) (3.0) (1.4) (1.7) 

Surface NH4
+  

(μg N·L−1) 
43.3 78.3 29 22.2 11.7 17.5 27.2 14.1 24.9 18.8 21.7 20.5 15.7 

(20.5) (64.9) (18.3) (12.0) (8.5) (10.1) (13.5) (7.7) (14.4) (12.1) (12.8) (20.9) (7.4) 
Bottom NH4

+  
(μg N·L−1) 

46.3 327.0 447.7 406.0 338.3 57.6 81.5 26.7 23.3 12.0 21.7 20.5 15.7 
(19.5) (348.2) (352.1) (331.7) (603.5) (NA) (NA) (22.7) (14.6) (NA) (12.8) (20.9) (7.4) 

Surface NO3
−  

(μg N·L−1) 
241.4 356.8 110.7 108.3 111.7 169.6 77.7 176.1 174.6 176.1 357.3 536.2 356.4 

(112.4) (236.9) (100.2) (81.7) (90.2) (119.3) (65.4) (118.3) (119.1) (126.9) (126.5) (122.0) (78.6) 
Bottom NO3

−  
(μg N·L−1) 

251.9 485.9 222.0 261.4 138.4 47.8 70.1 220.5 112.1 62.0 357.3 536.2 356.4 
(138.4) (137.1) (370.5) (197.8) (80.2) (NA) (NA) (127.6) (171.4) (NA) (126.5) (122.0) (78.6) 

Surface SRP  
(μg P·L−1) 

17.1 33.5 11.5 9.2 6.1 7.8 7.6 4.5 6.9 6.6 28.6 36.3 25.5 
(10.7) (25.1) (4.3) (3.7) (3.1) (2.9) (3.3) (2.2) (2.5) (3.3) (18.7) (14.6) (16.2) 

Bottom SRP  
(μg P·L−1) 

12.6 60.7 14.6 8.3 2.7 11.8 1.0 5.0 8.0 6.3 28.6 36.3 25.5 
(11.4) (24.9) (2.1) (2.2) (3.1) (NA) (NA) (4.4) (4.1) (NA) (18.7) (14.6) (16.2) 
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Table 3. Seasonal variation in physicochemical variables of Douglas Lake. Values are sample averages with 95% confidence intervals in 

parentheses. Confidence intervals for sample averages represented by a single sample (i.e., no spatial replication) are denoted with NAs. 

Variable January February March April May June July August September October November December 

Depth (m) 
8.0 – 8.6 11.4 12 11.9 11.3 11.6 9.0 8.4 7.9 – 

(9.6) – (4.4) (5.1) (4.9) (4.9) (4.9) (4.8) (3.9) (3.9) (5.3) – 
Surface 

temperature (°C) 
3.2 – 9.6 19.3 23.6 28.7 29.6 29.4 25.6 20.3 13.7 – 

(1.3) – (0.5) (1.5) (1.4) (0.5) (1.3) (1.4) (1.2) (1.8) (0.9) – 
Bottom 

temperature (°C) 
3.4 – 7.5 14.6 19.6 23.0 24.7 25.7 24.6 19.8 12.8 – 

(1.2) – (1.4) (1.8) (1.9) (2.8) (1.9) (2.1) (1.1) (1.7) (0.8) – 
Surface O2 
(mg·L−1) 

12.5 – 12.7 12.4 9.2 8.8 7.8 7.5 8.0 8.7 9.9 – 
(0.7) – (0.7) (1.2) (0.8) (0.4) (0.3) (0.3) (0.3) (0.7) (0.9) – 

Bottom O2 
(mg·L−1) 

9.6 – 12.9 8.0 5.5 3.0 3.3 3.7 5.4 7.5 8.8 – 
(5.3) – (0.4) (1.5) (1.7) (1.7) (2.1) (1.8) (1.5) (1.4) (1.4) – 

Surface pH 
7.7 – 8.11 9.51 – – 7.69 8.42 8.33 8.2 8.34 – 

(0.36) – (0.32) (0.04) – – (0.19) (0.27) (0.21) (0.19) (0.25) – 

Bottom pH 
7.63 – 7.95 7.56 – – 7.69 7.46 7.73 8.02 8.04 – 

(0.38) – (0.22) (0.64) – – (0.19) (0.3) (0.18) (0.26) (0.34) – 
Surface DOC 

(mg·L−1) 
1.7 – 1.6 2.3 2.2 2.4 3.2 2.6 2.2 6.8 7.0 – 

(0.4) – (0.3) (0.4) (0.2) (0.2) (0.9) (0.4) (0.4) (0.9) (1.1) – 
Bottom DOC 

(mg·L−1) 
– – 1.3 1.7 2.0 2.0 3.6 3.1 2.5 6.9 7.1 – 
– – (0.2) (0.7) (0.5) (0.5) (1.5) (0.8) (0.9) (1.1) (1.8) – 

Surface NH4
+  

(μg N·L−1) 
50.1 – 27.9 41.3 24.9 16.3 30.6 26.4 15.9 13.1 13.9 – 

(21.9) – (6.4) (14.8) (10.5) (5.6) (31.0) (15) (6.1) (12.4) (8.1) – 
Bottom NH4

+  
(μg N·L−1) 

– – 23.4 14.5 25.4 155.6 124.4 47.9 32.8 164.6 232.3 – 
– – (NA) (8.9) (6.1) (255.9) (101.5) (23.7) (19.3) (185.9) (268.1) – 

Surface NO3
−  

(μg N·L−1) 
518.7 – 405.9 147.8 199.6 120.5 125.6 310.3 202.9 164.4 258.4 – 
(67.9) – (38.0) (49.7) (98.5) (88.4) (90.6) (185.3) (139.6) (64.0) (67.0) – 

Bottom NO3
−  

(μg N·L−1) 
– – 445.5 269.3 438.2 283.3 253.6 519.2 366.6 175.5 325.8 – 
– – (28.5) (62.8) (57.7) (122.5) (137.3) (286.4) (218.0) (101.9) (96.1) – 

Surface SRP  
(μg P·L−1) 

13.5 – 10.8 9.6 7.2 12.4 17.4 23.8 27.0 4.9 9.3 – 
(2.7) – (2.7) (2.9) (4.6) (7.9) (9.4) (14.4) (13.5) (3.2) (2.7) – 

Bottom SRP  
(μg P·L−1) 

– – 9.3 13.5 16.5 23.8 28.1 49.9 44.8 6.7 8.0 – 
– – (2.0) (7.9) (8.9) (12.5) (17.3) (23.2) (25.3) (4.2) (3.8) – 
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Concentrations of CO2 and CH4 at the surface of the reservoir also exhibited seasonal and spatial trends 

(Figure 2). Averaged across seasons, CO2 concentrations ranged from 103 µmol·L−1 at site C3 to 412 

µmol·L−1 at site U3 and CH4 concentrations ranged from 0.016 µmol·L−1 at site C2 to 0.089 µmol·L−1 at 

site M1 (Figure 2A,C). Averaged across sites, CO2 concentrations ranged from 39.7 µmol·L−1 in 

October to 481.4 µmol·L−1 in March and CH4 concentrations ranged from 0.003 µmol·L−1 in April to 

0.132 µmol·L−1 in January (Figure 2B,D). 

 

Figure 2. Surface concentrations of (A,B) CO2 and (C,D) CH4 from Douglas Lake as 

functions of (A,C) longitudinal position and (B,D) month of the year. Error bars represent 

95% confidence intervals around the sample average. 

3.2. CO2 and CH4 Emissions from Douglas Lake 

Reservoir-wide estimates of surface diffusion ranged from 27,137 kg·day−1 in January to  

2,091,331 kg·day−1 in July for CO2 and 0 kg·day−1 in March and April to 71 kg·day−1 in July for CH4. 

Area-specific rates of CO2 surface diffusion varied spatially with the low rates ranging from 2480 to 

6471 mg·m−2·day−1 in the downstream-most main lake sites (M2–M6) and cove sites (C1–C4), 

whereas higher rates ranging from 12,177 to 18,806 mg·m−2·day−1 occurred in the upstream-most 

lentic main lake site (M1) and the three upstream lotic sites (U1–U3) (Figure 3A). Area-specific rates 

of CH4 surface diffusion also increased from downstream to upstream within the lentic main lake and 

cove sites, ranging from 0.25 mg·m−2·day−1 at the downstream-most main lake site (M6) to  
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0.95 mg·m−2·day−1 at the upstream-most main lake site (M1). Surface diffusion of CH4 declined 

precipitously between the main lake site located the furthest upstream (M1) and the lotic upstream sites 

(U1–U3) (Figure 3C). Surface diffusion rates of CO2 and CH4 showed similar patterns across seasons. 

Averaged across all sites, surface diffusion ranged from 236 mg·m−2·day−1 in January to 18,185 

mg·m−2·day−1 in July for CO2 and from 0 mg·m−2·day−1 in March and April to 0.62 mg·m−2·day−1 in 

July for CH4 (Figure 3B,D). 

 

Figure 3. Surface diffusion of (A,B) CO2 and (C,D) CH4 from Douglas Lake as functions 

of (A,C) longitudinal position and (B,D) month of the year. Error bars represent  

95% confidence intervals around the sample average. 

Our evaluation of surface diffusion of CO2 and CH4 indicates that Douglas Lake is a net emitter of 

both of these GHGs, regardless of season or location within the reservoir. Emissions of CO2 were  

four to five orders of magnitude greater than emissions of CH4, which is consistent with previous  

studies of reservoir GHG emissions [11,22]. Our estimates of surface diffusion averaged across 

seasons and reservoir locations (7067 and 0.34 mg·m−2·day−1 for CO2 and CH4, respectively) fall 

within the range of previously reported rates of surface diffusion of these gases from other reservoirs 

throughout the world. Specifically, our estimates are similar to those from reservoirs in the Western 

United States [11], Canada [28–30], and Scandinavia [31], but are lower than estimates from tropical 

reservoirs [32]. These comparisons match the low-to-high latitude decline in GHG emissions reported 

by Barros et al. [4]. Only a few studies have reported GHG emissions from reservoirs in the eastern 
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United States. Beaulieu et al. [3] and Jacinthe et al. [33] reported higher emission rates, which could be 

a consequence of the higher agricultural land use (and consequent higher nutrient loading) surrounding 

their study reservoirs in Ohio and Indiana, respectively, compared to Douglas Lake. 

Much recent research has focused on documenting among-reservoir variation in GHG emissions 

and identifying broad scale environmental drivers of this variation, such as latitude, net primary 

production, and reservoir morphology [4,11,34]. Less is known about environmental gradients driving 

variation in GHG emissions within a single reservoir. Our findings suggest that surface diffusion of 

CO2 and CH4 increases from downstream to upstream locations in the reservoir. This pattern has been 

documented in previous studies and has been attributed to shallow depths and greater nutrient and 

carbon availability from tributary influxes in upstream areas of the reservoir, particularly at the river 

delta [3]. Interestingly, we did not observe strong differences in GHG flux between deeper main lake 

and shallower cove locations located at similar longitudinal positions. This finding suggests that input 

of nutrients and labile carbon from the three major tributaries (Nolichucky, French Broad, and Pigeon 

Rivers), and not factors associated strictly with shallow water, is important in generating higher levels 

of GHG surface diffusion in shallow upstream areas. 

Identifying seasonal variation in GHG emissions from hydropower reservoirs is also a key research 

need. We show that surface diffusion of CO2 and CH4 generally increases during the summer months, 

as observed in previous studies [22,31,32]. This pattern is consistent with higher temperatures 

throughout the water column and elevated rates of microbial metabolism, producing more CO2 and  

CH4 in bottom sediments and the water column [5,8,35]. Interestingly, we observed high surface 

concentrations and subsequent diffusion rates of CH4 in January as well. This seasonal anomaly was 

apparent for the most downstream main lake and cove sites. Future work should focus on elucidating 

causes of this high CH4 diffusion in January and exploring GHG fluxes in nearby reservoirs for similar 

seasonal anomalies. 

3.3. Modelling Spatial and Temporal Variation in GHG Emissions 

The Random Forests models were statistically significant (p < 0.0001) and explained 22.7% of the 

variance in CO2 surface diffusion and 20.9% of the variance in CH4 surface diffusion. Surface pH, 

Julian date, bottom DOC, distance upstream from the dam, and surface DOC were the five most 

important predictors of CO2 diffusion, whereas bottom temperature, surface O2, surface pH, surface 

DOC, and Julian date were the five most influential predictors of CH4 diffusion (Table 1). Partial 

dependence plots revealed nonlinear relationships between environmental predictors and surface 

diffusions of CO2 and CH4 (Figure 4). Specifically, surface diffusion of CO2 was highest when surface 

pH was less than eight and between Julian dates ranging from one to 180. Surface diffusion of CO2 

also increased notably between 40 and 70 km upstream from the dam. Surface diffusion of CH4 was 

positively associated with bottom temperature, with diffusion increasing at temperatures of 25 °C and 

higher. Surface diffusion of CH4 also declined notably when surface O2 was above 7 mg·L−1 and when 

surface pH exceeded 7.5. 

Multivariate statistical models have been applied to various questions related to global change  

biology [36,37], but they have had only limited application in studies of reservoir GHG emissions [4]. 

Our results suggest that multivariate statistical models can explain a moderate amount of variation 
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(20.9% to 22.7%) in CO2 and CH4 fluxes, using spatial factors and commonly-measured 

physicochemical factors as predictor variables. This lack of strong predictive capability could be due to 

several factors. First, we used TBL estimates of surface diffusion as the response variable, yet surface 

diffusion rates based on such estimates are inherently less accurate than direct measurements with 

floating chambers [21]. Second, diurnal cycling of CO2 and CH4 can influence rates of surface 

diffusion [5,38,39]; however, we did not include predictor variables to account for such diel variation. 

Third, although we included a variety of environmental variables as predictors, including other 

unmeasured environmental factors in statistical models would likely improve model performance. For 

example, structural and metabolic characteristics of lake-bottom sediments are known to be important 

drivers of GHG production and emissions in lakes and reservoirs [8,35]. Further, including temporally 

varying drivers such as tributary discharge and reservoir turnover rate would also likely improve 

model performance [3,10]. Nevertheless, relationships between GHG fluxes and the most influential 

predictor variables matched predictions based on known physicochemical properties as well as 

previous studies aimed at identifying environmental correlates of reservoir GHG emissions. For 

example, our partial dependence plots showed the negative relationship between CO2 flux and surface 

pH expected due to the known relationship between CO2 speciation and pH [5]. Other investigators 

have also noted a relationship between CO2 flux and pH in reservoirs of the Western United States [10]. 

Likewise, CH4 flux was positively associated with water temperature at the bottom of the reservoir and 

negatively associated with dissolved oxygen concentrations—factors that drive benthic microbial 

metabolism and anaerobic respiration pathways, respectively [5]. 

 

Figure 4. Partial dependence plots derived from Random Forests models showing the 

relationship between the five most influential environmental correlates (horizontal axes) 

and surface diffusion of (A,B) CO2 and (E–G) CH4. Inset numbers in each panel show variable 

importance. See Table 1 for a summary of variable importance for all 16 predictor variables. 
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Fundamental physicochemical relationships suggested by the results of our models indicate that our 

statistical models provide an essential first step toward developing and refining more precise and 

accurate statistical models which we view as an important goal in future studies of reservoir GHG 

emissions. In particular, further work should focus on measuring additional environmental variables 

that are hypothesized to be causally linked to GHG production in pelagic and benthic environments of 

the reservoir, as well as those variables linked to the flux of GHG via the key pathways. For example, 

sediment nutrient and oxygen conditions should be measured and used as causal predictors of CH4 

production and subsequent surface diffusion. Also, microbial abundance and functional composition in 

the pelagic zone in part determine the degree to which rising CH4 bubbles are oxidized to CO2 [14,38], 

and therefore may be precise and accurate predictors of CO2 and CH4 fluxes. Lastly, the use of recently 

developed and flexible statistical algorithms, such as Random Forests, allows investigators to identify 

nonlinear and threshold relationships between predictor and response, which is more informative than 

traditional correlative analyses based on linear regression [26]. 

Although our statistical models did not predict as precisely needed for the purpose of predicting or 

forecasting GHG emissions in other study systems, further refinement of statistical models like the 

ones we present here should be useful for several generally-applicable reasons. First, statistical models 

will improve understanding of cause-effect relationships between environmental and spatial factors 

and fluxes of GHGs. Second, models incorporating predictor variables compiled in a spatially 

continuous manner across a body of water (e.g., depth from digitized bathymetric maps) can be used to 

project GHG emissions in a spatially continuous manner. This approach can improve the precision of 

whole-reservoir emissions estimates over those estimates made from a small number of sampling 

stations placed in representative habitats and then extrapolated to the entire reservoir. Third, precise 

statistical models can be used to forecast emissions under future environmental conditions associated 

with reservoir aging [4] and/or changes in climate [40], nutrient loading [31], dam operations [3], or 

yet other unknown factors. Such models will be useful for life cycle analyses aimed at estimating the 

complete carbon footprint of hydropower projects starting with construction, extending through their 

operational lifetime, and ending with their decommissioning [34,41]. Lastly, although we developed a 

statistical model to predict spatial and seasonal variation in GHG emissions within a reservoir, this 

approach could easily be applied to broad-scale studies of variation in GHG emissions among 

reservoirs within a region, across a continent, or the entire globe. Such broad-scale studies will aid in 

better understanding broad scale drivers such as climate, reservoir type, or natural and human land cover. 

Estimates from such broad-scale studies will improve global estimates of GHG emissions from freshwater 

lakes and reservoirs necessary for understanding global carbon cycling and climate change. Moreover, 

forecasting among reservoir variation in GHG emissions can inform regional development of hydropower 

resources and provide estimates of cumulative GHG emissions from multiple reservoirs [42,43]. 

4. Conclusions 

Although hydropower facilities are frequently viewed as a green source of energy, a growing body 

of literature suggests that GHG fluxes from their reservoirs contribute globally significant amounts of 

GHGs to the atmosphere [3,4,15]. The present study provides two important contributions.  

First, our findings provide baseline estimates of GHG emissions from a reservoir in temperate  
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North America—a region for which data are limited, despite having a relatively large number of 

hydropower-generating reservoirs. Second, we demonstrate the utility of statistical models as 

predictive tools for studying GHG emissions. Hydropower resources throughout the world are being 

developed rapidly, and additional development is planned. This development is particularly rapid in 

Asia and South America [44,45], but recent interest in expanding hydropower resource use in the 

United States and Canada is also being evaluated [46–49]. Deeper understanding and prediction of 

GHG flux within and among reservoirs is essential to forecast the potential impact of regional 

hydropower development scenarios [43] on the global carbon cycle and the consequent implications 

for anthropogenic climate change. 
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