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Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and
their environmental effects remains context-specific. Hydrology, more than any other environmental var-
iable, has been studied in great detail with regard to dam regulation. While much progress has been made
in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-
specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A
statistical modeling framework is presented as a predictive tool to quantify and generalize hydrologic
responses to varying degrees of dam regulation at large spatial scales. In addition, the approach provides
a method to expand sample sizes beyond that of traditional dam-hydrologic-effect analyses. Model per-
formance was relatively poor with models explaining 10–31% of the variation in hydrologic responses.
However, models had relatively high accuracies (61–89%) in classifying the direction of hydrologic
responses as negative or positive. Responses of many hydrologic indices to dam regulation were highly
dependent upon regional hydrology, the purpose of the dam, and the presence of diversion dams. In addi-
tion, models revealed opposite effects of dam regulation in systems regulated by individual dams versus
many upstream dams, suggesting that the effects of dams may be countered by other dams in basins
experiencing intensified cumulative disturbance. Results also suggested that particular contexts, includ-
ing multipurpose dams, high cumulative regulation, diversions, and regions of unpredictable hydrology
are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such
as the ones presented herein, show promise in their ability to generalize the directionality of hydrologic
responses to dam regulation and provide parameter coefficients to inform future site-specific modeling
efforts.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Despite the ubiquitous existence of dams within riverscapes,
much of our knowledge about dams and their environmental
effects remains context-specific. Contextual knowledge regarding
eco-biophysical, societal, or economic patterns of dams stems from
research conducted in a few locations, focusing on only large dams
rather than a representative sample size, and lack of long-term
monitoring (Graf, 2005). Policies and regulations have also contrib-
uted to the context-specific nature of dam-related environmental
relationships by limiting the ability to develop generalizable trends
across multiple facilities and scales, despite differences in dam
ownership and purpose (Graf, 2005).
Hydrology, more than any other environmental variable, has
been studied in great detail with regard to dam regulation. Indeed,
dam-induced hydrologic responses have shown great promise in
displaying generalizable trends to support broadly-applicable the-
ories (Poff et al., 1997), including potential ecological responses to
altered streamflow conditions (Poff et al., 2010; Carlisle et al.,
2011). In general, dams are hypothesized to homogenize flows
across distinct hydroclimatic regions (Poff et al., 2007) by decreas-
ing maximum flows, rise and fall rates, and flow variability while
also increasing minimum flows (Magilligan and Nislow, 2001,
2005; Maingi and Marsh, 2002; Nislow et al., 2002; Batalla et al.,
2004; Pyron and Neumann, 2008; Fitzhugh and Vogel, 2011). How-
ever, minimum flows and baseflow indices may display variable
responses to dam regulation depending on regional hydrology
(McManamay et al., 2012). In addition, seasonal magnitudes, dura-
tion, frequency, and timing of flows seem to show far more site-
specific fidelity to dam operations and regional hydrologic regimes
(Richter et al., 1996; Batalla et al., 2004; Magilligan and Nislow,
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2005; Pyron and Neumann, 2008; McManamay et al., 2012). Thus,
a modeling framework to quantify and generalize the hydrologic
the effects of dams across large spatial scales would be beneficial
for multiple reasons, such as predicting hydrologic alteration in
ungauged basins (e.g. Eng et al., 2012), quantifying the degree of
hydrologic alteration in the landscape (Richter et al., 1998), and
providing a rapid assessment of potential hydrologic changes priori
to dam development (especially in countries facing intense devel-
opment). Such an exploratory technique could inform basin plan-
ning efforts and provide a priori parameter estimates for future
site-specific hydrologic modeling efforts. Furthermore, a funda-
mental knowledge gap in developing environmental flow stan-
dards is generalizing hydrologic responses, and associated
ecological responses, to landscape disturbances (Poff et al., 2010).
In cases of inadequate information or predictive tools, water policy
standards are many times presumed, rather than quantified,
thresholds of hydrologic change, above which are cause deleterious
ecological effects (Richter et al., 2012).

Given the complicated nature of predicting hydrologic changes
induced by dam-regulation, most approaches linking dam opera-
tions to downstream flows are context-specific in that they isolate
the hydrologic effects of individual dams. The vast majority of
these approaches rely on analyzing discharge information col-
lected during periods prior to and following dam construction
(e.g., Richter et al., 1996; Nislow et al., 2002; Gao et al., 2009). This
requires either considering the effects of dams in isolation or, if
desiring to build stream observation datasets that consider multi-
ple dams, it requires isolating the effects of an individual dam on
each stream gauge. To ensure stream gage records reflect the influ-
ence of a single dam, stringent criteria are imposed to isolate the
individual dam-related effects, such as (1) adequate pre- and
post-dam regulation discharge information, (2) no additional
dam regulation besides the dam of interest, (3) short distances
between dam and stream gauge, (4) very few tributaries between
dam and stream gage, and (5) very little additional watershed dis-
turbances, such as urbanization (e.g., Poff et al., 2007; Gao et al.,
2009). Ultimately this restricts sample sizes and limits the conclu-
sions drawn from such analyses because typically only large dams
with long historical records are considered (Graf, 2005).

As opposed to relying on pre- and post-hydrologic information,
other approaches isolate individual-dam effects by developing
algorithms to optimize reservoir releases based on available inflow
and outflow information (Yeh, 1985; Wurbs, 1993; Labadie, 2004).
Optimal reservoir release scenarios are usually developed for only
one to a few dams and provide a mechanism to balance ecological
and societal needs regarding water use. Nonetheless, reservoir
operation algorithms can be quite complex, incorporating stochas-
tic variation based on forecasted inflows (Stedinger et al., 1985b),
parameter uncertainty in reservoir release simulations (Stedinger
et al., 1985a), and uncertainty in reservoir operation rules based
on fuzzy modeling (Shresha et al., 1996). Until recently, incorporat-
ing reservoir operations into larger scale process-based hydrologic
models (e.g., SWAT – Soil and Water Assessment Tool) was non-
existent (Bouraoui et al., 2005), time and resource intensive (e.g.,
Vörösmarty and Moore, 1991), or limited in application (Arnold
and Fohrer, 2005). Most current process-based or routing hydro-
logic models support reservoir routing applications by incorporat-
ing algorithms dependent upon simulated inflows, dam purpose,
evaporation, storage capacity, and water demands (Haddeland
et al., 2007; Hanasaki et al., 2006; Zhang et al., 2010; Zhang
et al., 2011; Kalogeropoulos et al., 2011). Because process-based
modeling is time-intensive, most applications incorporating reser-
voir effects have been applied at the basin-level (e.g., Zhang et al.,
2010, 2011; Kalogeropoulos et al., 2011). However, global river
routing models have been developed that incorporate reservoir
operations, typically from the largest reservoirs with adequate
documentation (Döll et al., 2003; Hanasaki et al., 2006). Nonethe-
less, this approach requires isolating reservoirs with adequate
information, simulating inflows for each reservoir, and assuming
reservoir operations based on available information. For example,
Hanasaki et al. (2006) simulated reservoir operations for 452 reser-
voirs occurring globally using existing reservoir datasets, global
river routing discharge information, and water use information.
Process-based models are highly informative because they provide
a mechanistic understanding of water routing through the land-
scape and infrastructure and provide simulated hydrographs at rel-
evant time-steps. However, incorporating dam regulation effects
into process-based models requires making assumptions a priori,
which becomes more difficult and error-prone at larger spatial
scales. Furthermore, error propagation can be severe in river sys-
tems with many dams, especially multipurpose dams.

In contrast to developing process-based model structure, statis-
tical models are relatively inexpensive (in terms of time) to
develop, can be applied at large spatial scales, and typically require
less a priori assumptions as their process-based counterparts. In
addition, statistical models can be used as an exploratory tech-
nique or a pre-cursor to process-based models by providing
boundaries to parameter estimates and informing the develop-
ment of reservoir operation algorithms. However, statistical
approaches developed to quantify the effects of dam-regulation
at large spatial scales requires consideration of four main factors:
(1) expanding sample sizes beyond available pre- and post-dam
regulation data, (2) incorporating information on cumulative dam
regulation in addition to isolating individual dam effects, (3) incor-
porating other watershed disturbances besides dam-related
effects, (4) accounting for differences in regional hydrologic con-
texts, and (5) characterizing sources of error in accurately predict-
ing hydrologic responses to dam regulation. The purpose of this
study was to construct a statistical modeling framework to predict
the complex hydrologic effects of dam regulation on streams by
addressing the five main factors mentioned above. Specifically,
pre-dam regulation conditions are modeled to boost sample sizes
to support large-scape modeling efforts. In order to quantify and
generalize dam effects on hydrology, differences in individual ver-
sus cumulative effects of dam regulation and differences in dam
operations (i.e., purpose and diversions) were considered in a ser-
ies of alternative models. To understand the importance of regional
natural flow regimes, hydrologic classes, groups of streams with
similar hydrology, were incorporated as structural component of
models. Lastly, the relative contribution of different regulation
contexts to error in models predicting hydrologic responses to
dams was also considered.
2. Methods

2.1. Overview of statistical modeling approach

To model hydrologic responses to dam regulation, a series of
steps were required, including assembling stream gauges regulated
by dams (Section 2.2), quantifying hydrologic responses (Sec-
tion 2.3), assembling relevant predictors of dam regulation (Sec-
tion 2.4), and then building alternative statistical models
(Section 2.5). Each of these steps are described more thoroughly
in the following sections. Hydrologic responses were quantified
in two approaches depending on gauge records. First, for gauge
records extending prior to dam construction, hydrologic changes
were quantified using discharge information from pre- and post-
dam regulation periods. For gauge records not extending prior to
dam construction, pre-dam regulation conditions had to be pre-
dicted using models (i.e. random forests). Predictors describing
local dam characteristics (e.g., storage, purpose, diversions),
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cumulative dam characteristics (e.g., cumulative upstream stor-
age), and non-dam-related disturbances (e.g., urbanization) were
summarized and used in models. Statistical models were then con-
structed using Generalized Linear Mixed Models as these provide
means to incorporate structure, such a regional hydrologic context.

2.2. Selecting stream gauges regulated by dams

In order to evaluate varying degrees of dam-regulation, a
diverse dataset of stream gauges occurring at variable distances
downstream of small to large dams and along a gradient of low
to intense cumulative regulation would be ideal. Given that the
purpose of this study was to model the effect of these attributes,
the criteria for selecting dam-regulated stream gauges was quite
liberal, with the exception of insuring the main cause of hydrologic
modification was, in fact, dam regulation. McManamay et al.
(2014) previously selected 1180 USGS stream gauges regulated
by dams (Fig. 1) and the methodology they used is expanded here.
Two databases were used to selected dam-regulated gages: the
Geospatial Attributes of Gages for Evaluating Streamflow (GAGES)
(Falcone et al., 2010; Falcone, 2011) and the National Inventory of
Dams (NID) (USACE, 2013). The GAGES database was a national
effort to compile natural and anthropogenic information in the
upstream watersheds of 9322 USGS stream gauges. The database
classifies gauges based on reference or non-reference hydrologic
condition and provides a suite of variables useful for identifying
causal mechanisms for hydrologic alteration, such as information
on dam regulation, urbanization, withdrawals. In addition, GAGES
provides text on hydrologic conditions from the USGS Annual
Water Data Reports (ADRs) along with additional screening com-
ments from regional experts (Falcone et al., 2010). ADR reports
and screening comments provide expert judgment on the extent
and cause of hydrologic alterations, including dam regulation. Typ-
ically, ADR reports provide the name(s) of the dam contributing to
regulation and the year in which dam regulation was initiated. The
NID has comprehensive information for dams in the USA including
their purpose, dimensions, storage capacity, contributing drainage
area, river name, and year built.
Fig. 1. Dam-regulated stream gauges assigned to natural hydrologic classes using lan
A four-step screening criteria was used to identify dam-regu-
lated gauges: (1) gauges with at least 1 major dam upstream, (2)
gauges below hydroelectric facilities, (3) ADR reports indicating
regulation by 1 or more dams, and (4) the stream gauge’s period
of record having at least 15 years post-dam regulation. Major dams
are defined as structures P15-m heights or P6167-Ml storage
capacity (Falcone et al., 2010). Using the GAGES database, gauges
with at least 1 major dam in their contributing watershed and hav-
ing at least a 15-year period of record were selected. Additional
emphasis was placed on capturing non-major dams used to gener-
ate hydroelectric energy because their operation may dispropor-
tionately influence downstream hydrology relative to their size.
The locations of hydroelectric dams were obtained from Oak Ridge
National Laboratory’s NHAAP database (ORNL, 2014). Using a spa-
tial join procedure in ARC Map 9.3, USGS stream gauges falling
within 15 km were linked to each hydroelectric dam and then
manually reviewed to select the closest downstream gauge.

All gauges from criterias 1 and 2 were then screened individu-
ally for comments indicating the cause of hydrologic alteration was
dam regulation. Gauges were included if ADR reports used descrip-
tors, such as ‘‘regulated by’’, ‘‘regulation’’, ‘‘powerplant’’, and
‘‘afterbay’’, and provided the specific name of the nearest upstream
dam and/or alluding to cumulative dam regulation were included.
Gauges with ADR reports describing diversion scenarios were also
included if they also mentioned the dam responsible for diverting
water. In order to ensure gage records did not precede dam regu-
lation, ADR reports and spatial analyses were used to account for
the year of construction of dams upstream of each gauge and their
year of construction. Typically, the earliest year(s) of regulation by
the dam(s) inducing the majority of control over hydrology at each
gauge was provided within the ADR report. However, an assess-
ment was required to ensure dates of major dam construction were
accurate and the construction of smaller, influential dams was not
occurring in the basin after the date of initial regulation. To avoid
including smaller off-channel agriculture ponds, only dams >6 m
in height were selected and their latitudes and longitudes were
imported into ARC Map 9.3. Boundaries for the contributing
watershed above each stream gage were provided by Gages II.
dscape and climate models (taken and modified from McManamay et al. (2014)).
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Using a spatial join procedure, NID dams were linked to each
gauge’s watershed and each gauge was individually assessed to
determine the first and last year of dam construction in the basin.
Non-major dams comprising only 5 Ml km�2 of basin area tend to
show little influence on hydrologic patterns (McManamay et al.,
2014). Hence, the date of construction for these dams was ignored
if the following conditions were met: (1) they preceded the initial
year of regulation by a major dam occurring closer to the gage and
(2) did not contribute to more than 5 Ml km�2 to cumulative
upstream storage if accompanied by other smaller dams. Gauge
records were updated to reflect regulation following the last year
of influential dam construction in the basin.

2.3. Building a hydrologic response dataset

To characterize hydrology, 37 hydrologic indices were selected
based on their ability to describe all five key components of the
flow regime (magnitude, frequency, duration, timing, and rate of
change) (Poff et al., 1997) and their use in previous studies assess-
ing dam-regulation (McManamay et al., 2012, 2013). The indices
including the 33 Indicators of Hydrologic Alteration (Richter
et al., 1997, 1998), mean annual runoff, daily CV flow, predictabil-
ity of flow, and frequency of high flows 3X median flow (Olden and
Poff, 2003) (Table 1). Mean daily stream flow data for the 1180
gauges were downloaded from the USGS National Water Informa-
tion System. Discharge records were evaluated to ensure only time
Table 1
Performance of random forest models in predicting hydrologic indices in reference-cond
sample using a cross-validation procedure. NRMSE refers to RMSE normalized by the range
for those indicated by *. Indices denoted by � were not included in subsequent analyses b

Group Hydrologic index Description M

Variation MA3 Daily CV

Monthly flows MA12 Jan flow
MA13 Feb flow
MA14 Mar flow
MA15 Apr flow
MA16 May flow
MA17 Jun flow
MA18 Jul flow
MA19 Aug flow
MA20 Sep flow
MA21 Oct flow
MA22 Nov flow
MA23 Dec flow

Runoff MA41 Runoff
Low flows ML17* Baseflow Index

DL1 1-Day low
DL2 3-Day low
DL3 7-Day low
DL4 30-Day low
DL5 90-Day Low
DL16 Low-flow Dur
DL18 Zero-flow Days

High flows DH1 1-Day high
DH2 3-Day high
DH3 7-Day high
DH4 30-Day high
DH5 90-Day high
DH15 High-flow Dur

Timing TL1� Date Ann Min
TH1� Date Ann Max

Predictability TA2* Predictability 5
Frequencies FL1 Low-flow Freq

FH1 High-flow Freq
FH6 High-flow Freq2

Rate of change RA1 Rise rate
RA3 Fall rate
RA8 Reversals
periods following the latest dam construction were evaluated. Dis-
charge records were imported into the Hydrologic Index Tool (HIT)
software (Henriksen et al., 2006) to calculate hydrologic indices.

Although all 1180 gauges contained post-dam regulation
records, information on pre-dam regulation regimes was needed
to adequately characterize hydrologic changes (from natural flow
conditions) induced by dam regulation. Pre-dam regulation
regimes were determined in two ways: (1) isolating gauges with
records proceeding dam construction, or (2) using models to pre-
dict reference-condition hydrology for dam-regulated gauges. Each
record was examined to determine if at least 15 years of data was
available prior to dam regulation in the upstream basin according
to McManamay et al. (2014). Each gauge record was individually
compared to the earliest date of construction for all dams exceed-
ing a cumulative storage of 5 Ml km�2. Historical patterns in other
watershed disturbances (e.g. urbanization, withdrawals) were also
used to determine any disturbances prior to dam construction (see
McManamay et al., 2012 for methods). In addition, plots of hydro-
logic records pre-regulation and post-regulation were visualized to
ensure that apparent changes were associated with regulation. A
total of 237 gauges (of the 1180) had sufficient pre-dam regulation
data. Pre-dam regulation records were isolated from the entire per-
iod of record (accounting for 2 years of construction) for each
gauge and all 37 hydrologic indices were calculated using HIT.

For the remaining 943 gauges, records were insufficient in
length or included other disturbances and thus, models would be
ition streams%. Variation refers to variation explained within the out-of-bag (OOB)
in the data. All indices were log(x + 1) transformed prior to model construction except
ecause of poor performance in random forests.

ean (log trans.) % Var explained RMSE NRMSE

2.240 87.16 0.219 0.095

1.839 93.96 0.500 0.623
1.905 93.72 0.496 0.518
2.015 93.83 0.474 0.513
2.073 93.29 0.485 0.529
2.061 92.38 0.516 0.586
1.938 92.08 0.530 0.537
1.713 90.77 0.552 0.670
1.556 90.34 0.552 0.619
1.543 90.89 0.539 0.606
1.595 91.92 0.513 0.750
1.714 93.28 0.499 0.829
1.794 93.99 0.492 0.884

0.331 92.94 0.130 0.099
0.134 79.1 0.071 0.078
0.923 89.03 0.579 2.102
0.937 89.11 0.579 2.101
0.961 89.43 0.573 2.075
1.071 90.65 0.544 1.948
1.312 92.78 0.490 1.704
1.081 61.09 0.526 0.233
0.432 78.16 0.809 0.316

3.119 91.26 0.501 0.235
2.970 92.04 0.479 0.276
2.809 92.43 0.464 0.335
2.525 92.99 0.447 0.568
2.314 93.54 0.436 1.122
1.081 82.73 0.276 0.165

2.320 39.45 0.557 0.002
1.917 59.41 0.554 0.002

7.20 68.41 8.927 0.107
0.778 67.53 0.358 0.243
0.941 86.16 0.209 0.155
0.871 86.65 0.232 0.145

1.693 90.5 0.502 0.214
1.415 91.21 0.431 0.183
1.927 67.67 0.211 0.118
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required to estimate pre-dam hydrologic conditions. A reference
dataset of 2618 gauges was developed for the entire US and
included records from the 237 gauges with pre-dam information
(McManamay et al., 2014). Using the reference dataset, random
forest models (Breiman, 2001; Cutler et al., 2007) were used to pre-
dict pre-dam values for 35 hydrologic indices for the 943 gauges
without pre-dam hydrologic information. Models were con-
structed using 77 climate and landscape predictors hypothesized
to influence hydrology, including precipitation, temperature, basin
topography, and soil information summarized within the
watershed upstream of each gauge (McManamay et al., 2014). Ran-
dom forests generate a large number of trees (�500) and then
combine the predictions from all trees. A random subset of vari-
ables and a bootstrap subsample of the data (63% of 2618 gauges)
are used to construct each tree. The remaining samples [out-of-bag
(OOB) observations] are used in a cross-validation procedure to
calculate% variance explained and root-mean-square-error (RMSE).
RMSE values were normalized (NRMSE) by dividing by the RMSE
value by the range of values for each hydrologic index. Hydrologic
variables were log(x + 1) transformed prior to developing random
forests. Because of poor performance in random forests, Julian date
of annual maximum and minimum were dropped from subsequent
analyses.

Using pre- and post-hydrologic indices, a response ratio was
calculated as (post value � pre value)/pre value. For gauges with
0 values for pre-hydrologic indices, we assigned response ratios = 1
if post-hydrologic index values were >1 and response ratios = 0 if
post values were 0. Although response ratios for individual hydro-
logic indices are informative, an index that takes into account mul-
tiple hydrologic indices simultaneously would be advantageous. In
addition, such an index might also provide a measure of overall
departure from the normal tendency of reference stream condi-
tions. Hydrologic classes represent a typical range of variation
found in natural flow regimes. Hence, if a regulated gauge can be
assigned to a hydrologic class, then the range of variation within
those classes can be used as a reference baseline to measure outlier
distances. Recently, a hydrologic classification of natural flow
regimes was completed for the entire US (Fig. 1, McManamay
et al., 2014). Each of the 1180 dam-regulated gauges were assigned
to 1 of 15 classes based on climate and landscape variables in
Table 2
Predictor variables for hydrologic response models. Effect type includes random effects (R

Variable Unit Description

Hydroclimatic context
Class Factor Hydrologic classification that group

Local dam
L.STOR Ml km�2 Total storage (megaliters [Ml]) of th

of gauge
DIV Binary Indication of large amounts of wat

transfers
PURPOSE Factor Classification of dams by their pur

supply (S), flood control (F), flood c
hydropower + additional purposes

DIST.DAM km River distance to nearest upstream
DIST.MDAM km River distance to nearest upstream

Cumulative dam
N.STOR Ml km�2 Total storage (megaliters [Ml]) of a

gauge. When considered with L.ST
D.DENS Dams 100 km�2 Total number of dams upstream of

Other disturbance
WITHD Ml yr�1 km�2 Total upstream freshwater withdra
IRRIG % Percent of irrigated lands in upstre
DEV % Percent of low, medium, and high
PLANT % Percent of planted or cultivated lan
CANALS % Percent of total stream length in u

‘‘pipeline’’
random forest models (80% accuracy) (McManamay et al., 2014).
Using the 35 indices summarized for reference and regulated
gauges, Mahalanobis distances (D) were calculated as the multivar-
iate distance from each regulated gauge to the centroid of that
gauge’s respective hydrologic class (McManamay et al., 2014).
Hence D is a measure of how far removed a regulated gauge is from
natural flow conditions. Prior to calculating D, all magnitude-
related variables were standardized by mean daily flow to remove
any effects of river size.

2.4. Assembling a predictor dataset

Predictors for gauges were placed into four categories: (1)
hydroclimatic context, (2) local dam variables, (3) cumulative
dam variables, and (4) other disturbance variables (Table 2).
Hydrologic responses to dam regulation may vary within different
hydroclimatic contexts (Poff et al., 2007; McManamay et al., 2012).
Hydrologic classes provide an indication of groups of streams with
similar natural hydrologic variation and are useful in stratifying
hydrologic responses to disturbance (Arthington et al., 2006). As
indicated in Section 2.2, the most probable hydrologic class was
assigned to each regulated gauge (McManamay et al., 2014) and
was included as a predictor to control for natural hydrologic vari-
ation across regions (Fig. 1).

Local dam variables described the nearest upstream dam on the
mainstem or largest tributary from each gauge and included dam
storage (L.STOR), a binary indication of diversion at the dam
(DIV), dam purpose (PURPOSE), and distance from the gauge. Local
dam characteristics were obtained from the National Inventory of
Dams (NID) (USACE, 2013). Dam storage represented maximum
storage capacity as reported in NID. Diversion dams were identi-
fied using comments in ADR reports, including ‘‘diversion’’,
‘‘bypass’’, ‘‘transbasin transfer’’, using gauge names (e.g., Gauge
12137800, Sultan River Below Diversion Dam Near Sultan, WA),
and using dam names (e.g., NID-OR00716, South Fork Diversion
Dam). NID also provides 11 different purposes for dams and each
dam may have multiple purposes. In addition, the order indicates
the relative importance of purposes. While an exorbitant number
of combinations could be possible, 180 different combinations
were present for dams in the present dataset. In order to reduce
E) as grouping factors and random slopes (RS) within grouping factors.

Effect type

s streams according to similar hydrologic characteristics RE (group)

e nearest upstream dam corrected for drainage area (km2) Fixed; RS

er diverted upstream including bypasses and transbasin Fixed

pose (from NID 2013). Purposes included: other (O), water
ontrol + water supply (FS), hydropower (H), and

(HA).

Fixed

dam Fixed
major dam (if same as DIST.DAM, then value = 0) Fixed

ll upstream dams corrected for drainage area (km2) of
OR, N.STOR was recalculated as N.STOR–L.STOR

Fixed; RS

each gauge per 100 km2 of drainage area Fixed

wals (megaliters [Ml]) per km2 Fixed
am watershed Fixed
intensity developed lands in upstream watershed Fixed
ds in upstream watershed Fixed

pstream watershed classified as ‘‘canal’’, ‘‘ditch’’ or Fixed
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the combinations into a reasonable number, the magnitude and
nature of hydrologic responses were hypothesized for dams based
on purposes. Five categories were created to represent different
types and degrees of hydrologic disturbance: other (O), water sup-
ply (S), flood control (F), flood control + water supply (FS), hydro-
power (H), and hydropower + additional purposes (HA). Dams
classified as ‘‘other’’ included smaller ponds used for recreation,
fish and wildlife, fire protection, or farming. S dams included irriga-
tion and public supply. F dams included navigation lock and dams.
HA included any additional purpose besides hydropower because
hydropower was presumed to have the largest effect on hydrology
relative to size.

For each gauge, a straight-line distance (SLD) upstream to the
nearest upstream dam was calculated using the latitude and longi-
tude coordinates for the dam and the gauge. For each gauge, the
GAGES II dataset provided average main-stem sinuousity (SINU),
which represents a unit-less ratio of total streamline length (km)
to straight-line length (km). Thus, total distance upstream (DIS-
T.DAM) could be calculated as SLD*SINU. In many cases, the near-
est upstream dam was not classified as a major dam (P15 m in
height or storage P5000 acre feet). Thus, a distance to the nearest
major upstream dam (DIST.MDAM) was calculated similar to that
for nearest upstream dam.

Cumulative dam variables included total upstream storage by
dam in the river network (N.STOR) and dam density (D.DENS).
Total upstream freshwater withdrawals (WITHD), percent irrigated
agriculture (IRRIG), urban development land use (DEV), agricul-
tural land use (PLANT), and percent canals (CANAL) were included
as non-dam disturbance variables. All cumulative and non-dam
disturbance variables were provided by the GAGES II database as
summaries in the watershed upstream of every gauge.

All predictor variables were examined for multicollinearity and
skewness in their distribution. L.STOR and N.STOR were correlated
as was DIST.DAM and DIST.MDAM. In addition, L.STOR and N.STOR
were highly skewed and thus, were log(x + 1) transformed. In
model building, local and cumulative dam variables were consid-
ered separately and then combined (see next section). In cases of
separate analyses, L.STOR and N.STOR were not modified. However,
in cases where both variables were used in models, N.STOR was
represented as ‘‘additional upstream storage’’ by subtracting
L.STOR from N.STOR. Hence, if only one dam was upstream, then
N.STOR would equal 0. DIST.DAM and DIST.MDAM were consid-
ered together as local dam variables. In cases where the nearest
Table 3
Alternative models to predict hydrologic responses. All models were applied to each hyd
dropped from the full model (no. 13) as single-term deletions to assess support for indivi

Alternative models Fixed effects

1. Local dam (HC) L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
2. Local dam L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
3. Cum dam (HC) N.STOR, D.DENS
4. Cum dam N.STOR, D.DENS
5. Other disturb (HC) FW.WITHD, PCT_IRRIG, DEV, PLANT, CA
6. Other disturb FW.WITHD, PCT_IRRIG, DEV, PLANT, CA
7. Local dam + Cum dam (HC) L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
8. local dam + Cum dam L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
9. Local dam + Other disturb (HC) L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
10. Local dam + Other disturb L.STOR, DIST.DAM, DIST.MDAM, DIV, PU
11. Cum dam + Other disturb (HC) N.STOR, D.DENS, FW.WITHD, PCT_IRRIG
12. Cum dam + Other disturb N.STOR, D.DENS, FW.WITHD, PCT_IRRIG
13. Full model (HC) All variables above
14. Full model All variables above
15. Local storage random slope DIV, PURPOSE, FW.WITHD, PCT_IRRIG,
16. Local storage random group L.STOR, DIV, PURPOSE, FW.WITHD, PCT
17. Network storage random slope DIV, PURPOSE, FW.WITHD, PCT_IRRIG,
18. Network storage random group N.STOR, DIV, PURPOSE, FW.WITHD, PC
upstream dam was major, DIST.MDAM was equal to 0 and DIS-
T.DAM was left unmodified. Otherwise, the entire distance to the
nearest major dam was used to calculate DIST.MDAM.

2.5. Model building

Generalized linear mixed models (GLMM) were constructed as
alternative hypotheses to test the support for hydroclimatic con-
text, local dam variables, cumulative dam variables, non-dam dis-
turbance variables in explaining variation in hydrologic response
ratios. GLMM models provide an improved approach over tradi-
tional statistical models, in that they account for random effects
while also handling non-normal data (e.g., Poission, binomial,
Gamma distributions) (Bolker et al., 2008). In the present situation,
hydrologic responses to dams are measured using stream gauges,
which constitute repeated measures within a given hydroclimatic
group (especially in situations where multiple gauges are present
along the same river system). In addition, GLMMs provide an
opportunity to account for structure in hydrologic responses,
which may vary according to hydroclimatic context.

The following models were constructed as combinations of vari-
ables: (1) local dam only, (2) cumulative dam only, (3) other distur-
bance only, (4) local + other disturbance, (5) cumulative + other
disturbance, (6) local + cumulative, and (7) all variables (full
model) (Table 3). Each predictor variable (12 total) was dropped
from the full model as single-term deletions to assess the support
for individual predictors. To test the importance of hydroclimatic
context, hydrologic classes were added as a random grouping
effect (i.e., 1|class) within each of the seven models listed above
(Table 3). As a comparison, separate models were constructed that
included a randomly-generated class as a null model (i.e., 1|null) to
ensure model support was not biased by including structural com-
ponents, i.e. random effects, as opposed to the true improvement
in model performance attributed to including hydrologic classes.
While hydrologic classes may provide adequate grouping struc-
ture, it was also hypothesized that the effects of dam disturbance
variables may be dependent upon hydrologic classes as opposed
to fixed effects. Hence, hydrologic class was added as a random
slope for two sets of models, one set considering L.STOR or N.STOR
as random slopes (e.g., L.STOR|class) and the other set considering
L.STOR and N.STOR as fixed effects (Table 3). For each model set,
L.STOR or N.STOR was accompanied by all other fixed variables
except DIST.DAM and DIST.MDAM. These variables were excluded
rologic response variable. In addition to models listed, each predictor (12 total) was
dual variables. (HC) = hydrologic classes as random effect.

Random effect

RPOSE (1 | class)
RPOSE (1 | null)

(1 | class)
(1 | null)

NALS (1 | class)
NALS (1 | null)
RPOSE, N.STOR, D.DENS (1 | class)
RPOSE, N.STOR, D.DENS (1 | null)
RPOSE, FW.WITHD, PCT_IRRIG, DEV, PLANT, CANALS (1 | class)
RPOSE, FW.WITHD, PCT_IRRIG, DEV, PLANT, CANALS (1 | null)
, DEV, PLANT, CANALS (1 | class)
, DEV, PLANT, CANALS (1 | null)

(1 | class)
(1 | null)

DEV, PLANT, CANALS (L.STOR | class)
_IRRIG, DEV, PLANT, CANALS (1 | class)
DEV, PLANT, CANALS (N.STOR | class)
T_IRRIG, DEV, PLANT, CANALS (1 | class)
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to simplify random effect structure because of the likelihood of
also being structured by hydrologic class membership.

GLMM models were used to model hydrologic response ratios
as Gamma distributions using an identity linkage. Response ratios
ranged from �1 to�1 and were highly skewed to the right, repre-
senting a Gamma distribution. However, negative values and
extremities in the distribution prevented model parameter esti-
mates from converging. Thus, ratios were transformed into a distri-
bution more conducive to analysis (constrained Gamma
distribution) by placing all values on a scale from 0 to >1 using a
log(x + 3) transformation. Models were constructed using the
lme4 package (Bates et al. 2014) in the R programming environ-
ment. Support for alternative models was examined using cor-
rected Akaike’s Information Criterion (AICc) to avoid over-
parameterization (Burnham and Anderson, 2002, 2004). Lowest
AICc values indicate the best model providing the highest explan-
atory power relative to the number of parameters, i.e. most parsi-
monious model (Burnham and Anderson, 2002). AIC weights were
also used in model averaging to assess support for models, but also
relative importance of individual variables. Relative importance for
each individual variable was calculated as W+(j), the sum of AIC
weights across models containing each variable j. Fixed effects
for variables were compared as T values, which take into account
coefficient direction, magnitude, and error. Model performance
was examined using R2 values and classification strength, i.e. the
ability of models to accurately classify responses as negative or
positive.
2.6. Error assessment

Three measures were calculated to represent difference aspects
of error in predictions for each gauge. Euclidean distances (E) rep-
resent a measure of accuracy, i.e. cumulative degree of separation
between predicted and observed values for all 35 hydrologic met-
rics. E was calculated for each gauge as the sum of squared dis-
tances between predicted and observed values using the
following formula:

Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn¼35

i
ðYij � bY ijÞ

2
r

where Y and bY are the observed and predicted values, respectively,
for the ith hydrologic metric for the jth stream gauge. E is sufficient
for assessing overall distance of outliers; however E may be a poor
assessment of precision. For example, predictions, while inaccurate,
may still correlate with observed values. Hence, coefficient of deter-
mination, r2, can provide an indication of how well predictions fit
the data where:

rj ¼
Pn¼35

i ðYij � YjÞðbY ij � bY jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn¼35
i ðYij � YjÞ

2Pn¼35
i ðbY ij � bY Þ2

r

where Y and bY are the mean values of all observed and predicted
hydrologic metrics, respectively, for the jth stream gauge. Lastly,
classification strength was calculated as the proportion of predicted
values for hydrologic metrics sharing the same directionality, posi-
tive or negative, as observed responses.

Sources of error in models could be attributed to different con-
texts, such as particular hydrologic classes, high cumulative dam
regulation, or dam purposes. Error metrics were modeled using
GLMMs with Gamma distributions for E and binomial distributions
for r2 and classification strength. Full models with hydrologic clas-
ses incorporated as a random effect were used as sources of error
in models. High cumulative dam storage relative to local dam
storage could create situations difficult to accurately model; thus,
the ratio of local to cumulative dam regulation (LN.Ratio) was
added to full models as an additional variable.
3. Results

3.1. Hydrologic response dataset

Random forest models performed well at predicting pre-dam
regulation hydrologic indices (Table 1). Models for 23 indices
explained >90% variance in the OOB sample (cross-validation)
whereas 7 of the remaining models explained >80% variance
(Table 1). Low-flow duration (DL16), low-flow frequency (FL1),
predictability (TA2), and reversals (RA8) had relatively low vari-
ance explained (61–68%) compared to other models. Performance
was poor for models explaining variation in Julian date of annual
minimum and maximum (Table 1) and thus, both indices were
removed from the remainder of the analysis. NRMSE values were
<1 for the majority of models.

Although hydrologic response ratios were variable (centralized
around 0), many displayed consistent responses. For example, the
following metrics tended to show strong decreases: daily CV flow
(MA3), mean annual runoff (MA41), low-flow duration (DL16),
number of zero-flow days (DL18), high flows of various duration
(DH1–DH5), high-flow frequencies (FH1, FH6), and rise/fall rates
(RA1, RA3) (Fig. 2). Winter and spring monthly flows (MA12–
MA16) were centralized around 0 whereas summer and fall flows
showed net increases (Fig. 2). Low-flow metrics, such as baseflow
index (ML17) and longer-duration low flows (DL3–DL5), tended
to show increases (Fig. 2).
3.2. Hydrologic response models

Percent variation explained for best models ranged from 10% to
31% whereas classification strength ranged from 61% to 89%
(Appendix A). R2 values were highest for reversals (RA8), daily CV
flow (MA3), and baseflow index (ML17) whereas classification
strength was highest for runoff (MA41), high-flow frequency 2
(FH6), and MA3 (Appendix A). For the majority of hydrologic indi-
ces (25/36), full models with single-term deletions and hydrologic
class as a random effect (1|class) had the highest support based on
AICc values (Appendix A, Supplementary material). Best models for
seven of the indices, however, included L.STOR or N.STOR modeled
as random slopes according to hydrologic class membership
(Appendix A). This suggests that fixed effects may not be the most
suitable for those metrics and the direction of the effects of dam
regulation may vary with hydrologic classes. Of the remaining
models, three included only local and cumulative dam variables
as fixed effects with class as a random effect. For most metrics, full
models with no variable deletions were comparable to best models
according to AICc weights (Appendix A, Supplementary material).

The relative importance of different variables was compared
using W+(j). Models including hydrologic class as a grouping vari-
able had far higher support (larger W+(j)) than models containing
random grouping structure (Fig. 3A). On average, models with
L.STOR and N.STOR as random slopes according to hydrologic class
had higher support than models including L.STOR and N.STOR as
fixed effects and hydrologic classes as random intercepts
(Fig. 3B). Among the 12 individual variables, PURPOSE and DIV
had the highest W+(j) values followed by L.STOR and N.STOR
(Fig. 3C). Local dam and cumulative dam variables had higher rel-
ative importance than other disturbance variables (Fig. 3C).

When considering full models (full + 1|class), fixed-effect coeffi-
cients for different predictors varied among hydrologic indices
(Fig. 4, Supplementary material). For example, DIV tended to
increase daily CV (MA3) but decrease all flow magnitudes (Fig. 4,



Fig. 2. Response ratios for 35 hydrologic metrics calculated from pre- to post-dam regulation as (post–pre)/pre.

Fig. 3. Akaike’s Information Criterion weights, W+(j), used to assess the relative importance of alternative models, such as, (A) incorporating hydrologic classes as random
effects in models as opposed to null random effects, (B) structuring local dam storage (L.STOR) and cumulative dam storage (N.STOR) as random slopes within hydrologic
classes as opposed to fixed effects, and (C) comparisons of the importance of all fixed-effect variables in explaining variation in hydrologic responses. Bars depicting fixed-
effect variables are shaded according to three groups of variables (local dam, cumulative dam, and other disturbances).
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Fig. 4. Comparisons of T statistic values for fixed-effect coefficients in full models for all hydrologic responses. Full models refer to model no. 13 in Table 3. White and black
bars represent positive and negative effects, respectively. Black dots indicate statistical significance, p < 0.05.
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Supplementary material). Likewise, different PURPOSE categories
had highly variable effects according to hydrologic indices. Hydro-
power (H and HA) and supply dams had the strongest effects on
hydrology relative to other dam purposes (Fig. 4, Supplementary
material). Hydropower dams tended to decrease low-flow duration
(DL16) and zero-flow days (DL18), but increased 1-day high flows
(DH1), low-flow frequency (FL1), and rate-of-change indices (RA1,
RA3, RA8). Supply dams decreased all flow magnitudes, especially
low flows and decreased most rate-of-change indices. Both hydro-
power and FS dams tended to increase low-flows; however, FS
dams increased baseflow index (ML17), increased high-flow dura-
tion (DH15), and decreased rise rates (RA1) (Fig. 4, Supplementary
material). As would be expected, WITHD had negative effects on
flow magnitudes, but was the only disturbance variable with posi-
tive effects on daily CV (MA3). DEV increased high-flow frequen-
cies (FH1, FH6) and rate of change indices (RA1–8) whereas
PLANT had negative effects on those indices (Fig. 4, Supplementary
material). IRRIG decreased runoff (MA41), predictability (TA2), and
high-flow frequencies (FH1, FH6). L.STOR and N.STOR both had
negative effects on daily CV (MA3) and positive effects on low-flow
indices, such as baseflow index (ML17) (Fig. 4). For many of the
hydrologic responses, however, L.STOR and N.STOR had opposing
effects when considered jointly (recall that when both variables
are considered in the same model, N.STOR = Total upstream stor-
age – L.STOR). For example, L.STOR and N.STOR had opposite
effects when considering winter and spring monthly flows, but
similar effects on summer and fall flows (Figs. 5 and 6). L.STOR
had negative effects on high-flow magnitudes, predictability, and
rate-of-change indices, whereas N.STOR had positive effects (Figs. 5
and 6).

Models incorporating random slopes for L.STOR and N.STOR
suggested that dam regulation may induce hydrologic responses
that are different, even opposing, depending on hydrologic class
membership (Supplementary material). For example, under
increasing dam storage scenarios, models typically predicted
decreases in daily CV for all classes except the Super-Stable
Groundwater (SSGW) class (Fig. 7, Supplementary material). Like-
wise, high-flow frequencies decreased with increasing dam storage
for several classes, but increased for others (Fig. 7). Class-specific
responses seemed to be associated with perennial versus intermit-
tent stream flow types (Fig. 7, Supplementary material). For exam-
ple, changes in baseflow index, high-flow frequency, and
predictability were more noticeable in intermittent than perennial
classes.

3.3. Error assessment

Error metrics ranged considerably across stream gauges sug-
gesting that predicting hydrology for some stream gauges may
be more difficult others. E ranged from 0.12 to 4.18 (mean = 0.64),
r2 ranged from 0 to 0.94 (mean = 0.40), and classification strength
ranged from 0.14 to 1 (mean = 0.69). N.STOR, L.STOR, multipurpose
flood control and hydropower dams, and IRRIG had significant
positive effects on E whereas LN.Ratio, DIST.MDAM, and PLANT
had significant negative effects (Fig. 8A, Supplementary material).
DIST.MDAM and PLANT had significant positive effects on r2

whereas D.DENS, DIV, other dams, and WITHD had significant neg-
ative effects (Fig. 8A, Supplementary material). Only WITHD had
significant effects (negative) on classification strength. E was
higher for some intermittent-type streams, especially those
located in the western US (Fig. 8B, Supplementary material). Late
Timing Runoff and Intermittent-Flashy 2 streams had lower r2 rel-
ative to other classes. Snowmelt 2 streams, by far, had lower class
strength.

4. Discussion

Statistical models were constructed at the scale of the entire
conterminous US to provide a predictive tool to quantify and gen-
eralize hydrologic responses to dam regulation. The contrasting



Fig. 5. Comparison of T statistics for fixed-effect coefficients for local dam storage (L.STOR) and cumulative dam storage (N.STOR) in predicting hydrologic responses when
considered jointly in full models (model no. 13 in Table 3). In joint models, N.STOR = total cumulative upstream storage – L.STOR to avoid effects of multicollinearity. Dashed
line indicates T value representing statistical significance, p < 0.05.
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effects of local and cumulative dam regulation, including the spe-
cific effects of dam purpose and diversions, were compared in
addition to the importance of providing the context of regional nat-
ural flow variation. In addition, the modeling approach presented
provided a method to expand sample sizes beyond that of tradi-
tional dam-hydrologic-effect analyses. Model performance, how-
ever, was relatively poor with the highest models explaining 30%
of the variation in hydrologic response ratios. While this was
expected for some hydrologic responses (e.g., low-flows), low per-
formance was unexpected for other responses (e.g., 1-day maxi-
mum flow). For example, Fitzhugh and Vogel (2011) developed
regional regressions to model 1-day maximum flows across the
US using natural watershed characteristics, dam storage, and pop-
ulation density. The majority of Fitzhugh and Vogel’s models
explained at least 80% of the variation in 1-day maximum flow
whereas similar models in the present study explained only 20%
of the variation. However, one key difference is that the statistical
models in the present study predict the direction and magnitude of
hydrologic responses to dam regulation, as opposed to predicting
raw magnitudes of hydrologic metrics. In contrast to the present
study, Fitzhugh and Vogel (2011) determined the effect of dam reg-
ulation on flood flow by adjusting values for dam storage to 0 and
predicting flood flows under ‘‘natural’’ conditions. Similar to
Fitzhugh and Vogel (2011), random forests explained 91% of the
variation in raw magnitudes of 1-day high flow in unregulated
rivers across the US in the present study (Table 1). Thus, there
are multiple approaches for estimating hydrologic alterations;
however, predicting hydrologic responses to dam regulation with
high certainty is difficult.

In contrast, models performed better at classifying the direction
of hydrologic responses as negative or positive. This suggests that
the directionality of hydrologic responses to dam regulation may
be generalizable whereas the magnitude of responses may be
poorly generalized. While some consistencies in hydrologic
responses were observed, the directionality in many hydrologic
responses to dam regulation were not as expected (e.g., low flows),
which suggested either two factors: (1) models predicting pre-dam
regulation values for hydrologic indices were inaccurate, or (2) the
dams in the current analysis represents a broader sample than that
typically considered in other contemporary analyses. For example,
the current analysis considers many small dams, including diver-
sions. In addition, different models revealed opposing effects of
local versus cumulative-dam regulation suggesting that hydrologic
responses to cumulative dam regulation are complex, and predict-
ing the hydrology downstream of individual dams may be more
easy accomplished using statistical approaches than predicting
that of cumulative dam regulation (Poff et al., 1997; Gao et al.,
2009). In addition, the responses of some hydrologic indices to
dam regulation were highly dependent upon context, such as
hydrologic class membership and the purpose of the dam. For
instance, multipurpose dams with high storage, high cumulative
storage relative to local storage, diversions, and close proximity
to dams are all sources of increased error in models. Furthermore,
predicting hydrologic responses to dam regulation seems to be



Fig. 6. Comparison of T statistics for fixed-effect coefficients for local dam storage (L.STOR) and cumulative dam storage (N.STOR) when considered separately (model nos. 16
and 18 in Table 3, respectively). In separate models, N.STOR = total cumulative upstream storage including local dam storage. Dashed line indicates T value representing
statistical significance, p < 0.05.
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more uncertain in some hydrologic classes, such as Late Timing
Runoff and Snowmelt 2 streams. Statistical models, such as the
ones presented herein, show promise in their ability to generalize
the directionality of hydrologic responses to dam regulation. How-
ever, great care should be used when using models to predict
hydrologic alteration as quantitative estimates given uncertainty
in parameters.

4.1. Hydrologic responses

One benefit of developing models to predict natural hydrology
is that natural hydrologic baseline information can be provided
for basins lacking adequate pre-disturbance information. In addi-
tion, natural hydrologic models can boost sample sizes for model-
ing efforts assessing hydrologic alterations across large spatial
scales (e.g., Carlisle et al., 2011; Eng et al., 2012). In the current
study, sufficient pre-dam disturbance information was only avail-
able for 237 gauges, roughly 20% of the final sample size (1180
gauges). The majority of these gauges were downstream and prox-
imate to major dams, constituting a limited sample of regulated
gauges induced by dams of various sizes and purposes. Hence, nat-
ural hydrologic models provided an opportunity to increase sample
size to assess a wider range of hydrologic effects induced by dam-
regulation.

Developing statistical models to predict natural hydrology for
the purpose of extrapolating values to ungauged or disturbance-
prone basins has been increasingly documented in the literature
(Sanborn and Bledsoe, 2006; Castellarin et al., 2007; Zhu and
Day, 2009; Carlisle et al., 2010; Murphy et al., 2013). Murphy
et al. (2013) found that regional regression models, developed
using climate and landscape information, performed better than
a prevailing rainfall-runoff model in explaining hydrologic statis-
tics (TOPMODEL). Likewise, Zhu and Day (2009) developed regres-
sion models (also using climate and landscape information) for
predicting baseflow hydrologic statistics, with the majority of R2

values > 0.98. Random forests have been shown to perform well
at predicting hydrologic statistics at regional or national scales
(Carlisle et al., 2010). Using climate, landscape, geology, and soil
information, Carlisle et al. (2010) developed random forest models
to predict pre-disturbance values of 13 hydrologic metrics.
Reported RMSE values were very similar to the current study and
suggested that random forests are a robust modeling framework
to predict hydrologic indices under natural conditions.

Many hydrologic responses to dam regulation were consistent
with that reported from other studies. In general, variability, high
flows, and rise/fall rates showed net decreases whereas low flows
and reversals showed net increases as found in other studies
(Magilligan and Nislow, 2001, 2005; Maingi and Marsh, 2002;
Nislow et al., 2002; Batalla et al., 2004; Pyron and Neumann,
2008; Fitzhugh and Vogel, 2011). However, responses in seasonal
magnitudes were highly variable as documented by others
(Richter et al., 1996; Batalla et al., 2004; Magilligan and Nislow,
2005; Pyron and Neumann, 2008). Winter and spring flows dis-
played little general patterns in directionality; however, summer
and fall flows typically displayed net increases. Specifically, August
and September flows correspond to the lowest flow periods



Fig. 7. Simulated hydrologic responses to increasing local dam storage among different hydrologic classes. Dam storage effects were based on models incorporating local dam
storage as random slopes within hydrologic classes. Simulations were conducted by varying local dam storage while keeping other variables constant and were based upon
model no. 15 in Table 3.
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throughout the majority of the US; thus, net increases in flow mag-
nitudes during these months is in agreement with multiple studies.
Because of differences in timing and magnitude of precipitation
and snowmelt, the seasonal timing of high flow events is much
more variable across the US than low flows (Poff, 1996). Annual
maxima can typically occur between January and June for the
majority of the country; thus, the lack of consistent responses by
winter and spring flows is not surprising.

Responses by high-flow frequencies are less frequently docu-
mented and displayed net decreases post-dam regulation.
Decreases in intermittency were also prevalent, suggesting that
dam regulation tends to convert intermittent streams to perennial
types as suggested by others (Larned et al., 2010; Steward et al.,
2012). Dams capture runoff during episodic, high-flow events
(Fitzhugh and Vogel, 2011), which potentially stabilizes flashy sys-
tems (Larned et al., 2010; Steward et al., 2012). However, other
studies evaluating anthropogenic-induced hydrologic alterations
to intermittent streams have typically noted amplified intermit-
tency through groundwater extractions or diversions at dams
(Stromberg et al., 2007; Levick et al., 2008). For example,
Stromberg et al. (2007) suggested many perennial stretches of
rivers in the arid Southwestern US were becoming increasingly
intermittent due to diversions from dams and led to alterations
in riparian vegetation community structure.

Despite some consistencies in the net directionality of many
variables, most hydrologic response variables had widely varying
distributions. For example, increases in low flows were not as dra-
matic and consistent as hypothesized based on previous studies. In
many cases, the effects of dam storage on low-flows (DL1–DL5)
were negative, opposite as expected. This could have resulted for
multiple reasons. First, as opposed to high-flows, low-flows of var-
ious duration are difficult to model (Zhu and Day, 2009) because of
the contribution of groundwater and the complication of localized
soil conditions (Sophocleous and Perkins, 2000). NRMSE values for
DL1–DL5 models were typically higher than other models (Table 1)
suggesting uncertainty in modeling natural low-flow baseline
hydrology. Likewise, Eng et al. (2012) reported that models pre-
dicting the probability of inflated flow magnitudes from anthropo-
genic disturbances performed more poorly than models predicting
deflated flows. Secondly, the sample of gauges presented in this
analysis represents a wider range of dam regulation (e.g., diversion
scenarios) than is typically included in studies assessing



Fig. 8. Assessment of sources of error in hydrologic response models. (A) Comparisons of T-statistics for fixed-effect coefficients in predicting Euclidean distances, r2, and
classification strength. (B) Effects of hydrologic classes on error were assessed by comparing random intercept values. * indicates statistical significance at the p < 0.05 level.
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wide-spread hydrologic responses to dam regulation (e.g., Poff et al.,
2007; Gao et al., 2009). Smaller dams used to divert water for irri-
gation or hydropower production were included in the current
study as opposed to focusing on only large dams. In addition, evap-
orative losses from reservoirs, on average, account for 5% of global
river flows (Shiklomanov, 2000), but have been reported in excess
of 26% of inflows (Vörösmarty and Sahagian, 2000). The large sam-
ple size in this study also increased the likelihood that other factors
besides dam regulation, such as withdrawals and urbanization,
may have contributed to decreases in low-flows. Because random
forests predict natural hydrologic conditions (i.e., pre-disturbance),
any disturbances occurring post-dam regulation could have influ-
enced hydrologic responses further highlighting the necessity of
including non-dam disturbance variables in models.
4.2. Response models

4.2.1. Hydrologic classes
Models incorporating hydrologic classes as structural compo-

nents had higher support than alternative models without any
structure, which suggests that the response of streams to dam reg-
ulation may differ depending on natural hydrologic contexts
(McManamay et al., 2012). For example, the results suggested that
an intermittent system in the Mid-western US may respond quite
differently to dam regulation than a stable, high baseflow system
in the Southeastern US. In addition, hydrologic classes may provide
an adequate alternative for controlling for background natural
hydrologic variation compared to incorporating a suite of predic-
tors of natural streamflow variation (e.g., climate, landscape fac-
tors, etc), since hydrologic classes have been predicted with high
accuracy using these metrics. Hydrologic classes, when incorpo-
rated as random slopes for L.STOR and N.STOR, had higher model
support than models incorporating classes as random intercepts.
This suggests that the direction of changes in hydrologic variables
with increasing dam regulation may vary depending on natural
hydrologic baselines. For example, Super-Stable Groundwater
(SSGW) systems showed increases in daily CV with increases in
dam storage, whereas all other classes showed consistent
decreases (Fig. 7). As the name would suggest, SSGW streams are
highly stable and lack the high and low extremities found in other
classes (McManamay et al., 2014). While dam regulation moder-
ates the extremities in other class types, it creates abnormally
higher variation in SSGW streams. As another example, many
intermittent stream types displayed increases in predictability
with increasing dam storage whereas perennial types displayed
decreases (Fig. 8). In addition, baseflow index displayed dramatic
increases for intermittent classes but moderate increases or
decreases in other classes.
4.2.2. Local and cumulative dam regulation
Local dam variables had higher model support than cumulative

dam variables. In part, this was because local-dam variables
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outnumbered and tended to be more descriptive of dam operations
than cumulative dam variables. However, this potentially also sug-
gests one or a combination of several possible conclusions: (1) gen-
erally, the most immediate upstream dam, if large, has the greatest
influence on hydrology relative to cumulative upstream distur-
bance, (2) hydrologic responses to the most immediate upstream
dam can be isolated from the effects of cumulative regulation using
statistical models, and/or (3) the hydrologic effects of cumulative
regulation may be more uncertain and variable and hence, explain-
ing less variation in models.

Among dam-related variables, dam storage has been used the
most extensively as an indicator of hydrologic alteration
(Vörösmarty and Sahagian, 2000; Nilsson et al., 2005; Lehner
et al., 2011). The functional significance of large dams in river sys-
tems is storing water, the larger the quantity the larger the down-
stream hydrologic effect. For instance, increases in dam storage are
likely to result in more dramatic decreases in daily variability.
Comparisons of local and cumulative storage yielded some unex-
pected results. When local and cumulative dam storage variables
were considered separately in models, their coefficients were sim-
ilar. However, when both variables were considered jointly, local
versus cumulative dam storage had opposing effects for many
hydrologic responses (in full models, cumulative storage was
adjusted by subtracting local storage). For example, local storage
had negative effects on winter-spring flows and low-flows yet
the opposite was true for cumulative storage. Local storage and
cumulative dam storage were unrelated to each other and to other
variables, including dam density, removing the likelihood of false
conclusions arising due to multicollinearity. In addition, drainage
area was experimentally added to models to determine if cumula-
tive storage was acting as a surrogate effect for larger basins; how-
ever, drainage area was not correlated with dam-regulation
variables, did not noticeably improve model performance, and
did not alter dam storage coefficients. Thus, the contrasting effects
of local versus cumulative effects are likely the result of (1) higher
uncertainty and variability when predicting the effects of cumula-
tive dam regulation or (2) a true mechanistic association as
opposed to a spurious finding. As documented elsewhere (Zhang
and Wei, 2012), individual anthropogenic activities may offset,
rather than compound, the effects of other anthropogenic activities
in basins experiencing intensified cumulative disturbance. The
model results suggest that extensive upstream dam regulation
may stabilize or counter the effects of local dam regulation for
many aspects of hydrology. For other hydrologic variables, such
as daily variation, baseflow index, and summer/fall flows, the
effects of local and cumulative storage may have compounding
effects. However, isolating the anthropogenic disturbance respon-
sible for specific hydrologic alterations in basins receiving cumula-
tive disturbance is difficult and requires time-series analysis (Vogl
and Lopes, 2009; Zhang and Wei, 2012), well beyond the scope of
this paper.

4.2.3. Dam purpose
Dam purpose and diversions had the highest support in models,

which suggests that models need to explicitly account for these
two factors in order to ensure accuracy in predicting hydrologic
alterations. According to Poff and Hart (2002), one of the biggest
challenges in understanding ecological responses (and hydrologic
responses) to dams is the absence of a simplified classification sys-
tem, created on the basis of dam size, purpose, and operation.
However, developing a dichotomous classification system is lim-
ited by varying classification criteria, such as those used to define
operation regimes (e.g., run-of-river, storage, etc), but also the
coarse and complex nature of one-to-many purposes provided
for each dam. For example, the National Inventory of Dams (NID)
lists 11 different purposes for dams, many of which have multiple
purposes and the order of which indicates the relative importance.
In the entire NID dataset (>87,000 dams), there are 760 different
combinations of dam purposes listed, 180 of which were present
in the current dataset. Hence, utilizing the current list of purposes
to model hydrologic responses was impractical and required
reclassification into larger and coarser groups, but also prioritiza-
tion of which purposes induce the largest hydrologic effects.
Despite the coarseness of the five broad classes of dam purposes
generated from the NID database, model results suggested that
dam operations (and hence, hydrologic responses) are strongly
linked to purposes assigned for each dam. This suggests there is
promise and reliability in classifying dams by their purpose to
inform changes in hydrology without relying on inflow and out-
flow data to create dam operation rules (e.g., Hanasaki et al.,
2006; Zhang et al., 2010; Zhang et al., 2011).

Dams can be placed into two coarse functional categories, stor-
age dams and run-of-river dams (Poff and Hart, 2002). Storage
dams typically have the largest effects on hydrology by storing
large quantities of water in order to moderate high flows or gener-
ate electricity. In contrast, run-of-river dams store lower quantities
of water and downstream discharge approximates inflows. In gen-
eral, storage dams include flood control and hydropower facilities
whereas run-of-river dams include water supply and other pur-
poses; however, the function of dams also depends on storage
capacity and may not neatly follow these coarse classifications.
For example, a large portion of hydropower dams in the US are
actually operated as run-of-river facilities with less noticeable
influences on hydrology (McManamay and Bevelhimer, 2013). As
expected, flood control and hydropower dams had the largest
effects on hydrologic responses relative to other purposes. In order
to moderate peak flows, flood control dams abnormally increase
baseflows and change seasonal timing (Petts, 1984); thus, the con-
sistent negative effects of flood-control dams on high flow metrics
made intuitive sense. However, most dams, regardless of size or
purpose, moderate peak flows (Fergus, 1997; Fitzhugh and Vogel,
2011), with decreases becoming more extensive as dam storage
increases. Thus, the positive effect of hydropower dams on 1-day
high flows was somewhat surprising. This does not suggest, how-
ever, that hydropower dams have net positive effects on peak
flows, but rather, hydropower dams have more neutral effects than
other types of dams. Dams with the sole purpose of generating
electricity (typically small, run-of-river facilities) had relatively
neutral effects on 1-day high flows (median, �9%; average, 10%)
whereas multi-purpose dams that generate electricity (HA) had
negative effects on 1-day high flow (median, �22%, average
�5%). In addition to peak flow magnitudes, hydropower dams con-
sistently had opposite effects on hydrology compared to other pur-
poses, including increases in high-flow frequency 1, rise rates, and
fall rates. Unlike other dam regulation, hydropower influences flow
on shorter temporal scales (hours to days) through peaking, i.e. dis-
charging high flows to generate electricity (Cushman, 1985). These
rapid fluctuations in flow may lead to unpredictable changes in
daily averages and thus, may more appropriately captured as met-
rics summarized as within-day variation (Bevelhimer et al., 2014).

4.2.4. Diversions
A general rule of thumb is that large dams decrease variability,

increase predictability, and increase low-flows (Poff et al., 2007).
While flow-stabilization is typical of larger facilities, water supply
dams and diversion dams tended to have just the opposite effects
(Stromberg et al. 2007; Levick et al., 2008). Diversion dams typi-
cally decrease baseflows but have minimal impacts on peak flow
events. This exaggerates the differences between high and low
extremities in the hydrograph, leading to harsh disturbance condi-
tions for biota (McManamay et al., 2013). Many studies have noted
the complex hydrologic and geomorphic effects of de-watering
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stream channels, which also lead to many unforeseen indirect hab-
itat changes (Ryan, 1997; Trush et al., 2000; Baker et al., 2011).
Thus, when generalizing the fluvial responses of stream hydrology
and geomorphology to dam-regulation, unique effects of diversion
dams are typically not considered (Grant, 2012), potentially
because they may be considered unique or less-common compared
to dams with integral powerhouses. However, the occurrence of
diversion dams is quite common. Within the US, approximately
40% of hydropower dams are estimated to divert water around
river reaches to generate electricity at downstream power plants
(Jager and McManamay, 2014); however, over 1/3 of these dams
have dewatered reaches less than 500 m. Globally, however, it is
estimated that over 80% of small hydropower dams (<50 MW)
involve diversions (Kibler and Tullos, 2014). While information
on dam purpose is provided in the NID, no easily-accessible data-
base provides information on diversions. Furthermore, the pres-
ence/absence of diversions is not synonymous with dam purpose.
Isolating the occurrence of diversions is essential for predicting
hydrologic responses to dam regulation.

4.3. Sources of error in predicting hydrologic alteration

The considerable range of values in error metrics suggested that
hydrologic responses to dam regulation can be predicted with
some confidence within particular contexts. However, situations
of high cumulative dam storage relative to local dam storage, large
multipurpose dams or small supply/recreation dams, and diver-
sions create conditions in which statistical models are poorly sui-
ted for providing quantitative estimates of hydrologic changes. In
these situations, predicting the directionality in hydrologic
responses, as opposed to the magnitude of responses, may be a
more suitable alternative. Likewise, predicted responses also varied
considerably across hydrologic classes. In general, hydrology
Fig. 9. Comparison of observed versus predicted values for the Smith River, primarily regu
in addition to 42 other major dams. Predicted values were based on full models (model
responded predictably to dam regulation in stable-perennial type
classes whereas hydrologic responses in intermittent-type classes
seemed more difficult to predict. However, Late Timing Runoff
and Snowmelt 2 streams were the most error-prone, which is
likely an artifact that streams in these classes were not regionally
homogenous but scattered in multiple geographic areas
(McManamay et al., 2014); thus, these classes had higher variation
among streams than other classes.

Increases in error as a result of high cumulative dam regulation
was expected since multiple upstream dams may have very differ-
ent purposes and hence, operations. For example, the Smith River,
VA at USGS gauge 02072000 is primarily regulated by Philpott Dam
with little additional upstream regulation (LN.Ratio = 0.999). Pre-
dicted values for most metrics mirrored observed values (Fig. 9).
In contrast, the Roanoke River, NC (USGS 02080500) is regulated
by Roanoke Rapids Dam in addition to at least 42 major dams
upstream (LN.Ratio = 0.289) (Fig. 9). In this situation, model perfor-
mance was poor, possibly for a number of reasons. Although many
of the dams in the Roanoke are used for hydropower, most are
multipurpose facilities, including John H. Kerr Dam, which is used
for hydropower, recreation, storage, and flood-control. In addition,
operations at Smith Mountain Dam and Leesville Lake Dam,
located further upstream, are coordinated as a pumped storage
project (AEP, 2014), which creates an additional level of complex-
ity in predicting hydrology downstream. Despite having lower
storage than other upstream dams, Roanoke Rapids Dam has
received the most pressure to reregulate the effects of cumulative
upstream dams in order to improve environmental conditions
(Rulifson and Manooch, 1990; Richter et al., 1996; Pearsall et al.,
2005), given its position as the last facility before Albermarle
Sound. Due to considerable flow restoration efforts, hydrology
below Roanoke Rapids Dam may resemble more natural than
regulated flows; hence, making conditions difficult to predict.
lated by Philpott Dam, and for the Roanoke River, regulated by Roanoke Rapids Dam
no. 13, Table 3).



Fig. 10. Comparison of observed versus predicted values for multiple gauges representing a variety of natural hydrologic contexts and regulation contexts: (A) USGS
02072000 Smith River near Philpott, VA, (B) USGS 13077000 Snake River at Neeley ID, (C) USGS 06282000 Shoshone River below Buffalo Bill Reservoir, WY, (D) USGS
02080500 Roanoke River at Roanoke Rapids, NC, (E) USGS 13341050 Clearwater River near Peck ID, (F) USGS 06871800 NF Solomon R at Kirkwin, KS. Gauges A–C represent
streams with relatively precise and/or accurate model predictions whereas gauges D–F represent streams where model performance was poor. Predicted values were based
on full models (model no. 13, Table 3).
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Stream gauges regulated by a single-predominant upstream
dam does not necessarily translate into accurate or precise model
predictions. As an example, stream gauges with high LN.Ratios
had variable accuracy, precision, and classification strength values,
even within similar hydrologic classes (Fig. 10). This suggests spe-
cific contexts create conditions difficult to model. For example, the
NF Solomon River (USGS 06871800) is completely regulated by Kir-
win Reservoir, a flood-control and water supply impoundment, and
has an LN.Ratio of 0.997. However, the NF Solomon River was clas-
sified as a Late-Timing Runoff system, which is a group of streams
characterized by perennial but unpredictable flows with high var-
iation in the timing of high flow events and high numbers of rever-
sals (McManamay et al., 2014). Predicting the responses to dam
regulation is difficult in these systems because natural hydrologic
patterns are similar to the general effects of dam regulation. As
another example, the Snake River (USGS 13077000) is regulated
by American Falls reservoir in addition to 16 other major dams
upstream (LN.Ratio = 0.700). However, precision and classification
strength of predicted responses were high (Fig. 10).
5. Conclusions

A statistical modeling framework was presented as a predictive
tool to quantify and generalize hydrologic responses to dam regu-
lation while taking into account local and cumulative dam regula-
tion, dam purposes, and regional flow variation. Although model
performance was poor in making quantitative predictions, models
were sufficient at classifying the direction of hydrologic responses
as negative or positive. An important contribution of this study is
the methodology of model development that includes deriving
complex predictors, such as dam purpose, and incorporating
multi-level hierarchical structure, such as regionally-specific
hydrologic responses. More research is needed to develop models
able to quantify hydrologic responses to disturbances at large
scales, especially disturbances that are complex and sensitive to
particular contexts.

Because less than 10% of dams within the US are considered
large (USACE, 2013), modeling frameworks that expand the sample
sizes beyond traditional pre- and post-data analyses are needed.
Pre-dam regulation hydrologic records are typically only available
for gauges downstream of large dams; thus, analyses relying on
pre-post information may only provide a small sub-set of stream
gauges regulated by dams. Likewise, analyses that exclude stream
gauges experiencing high cumulative dam regulation may also
limit conclusions drawn from these observations. The results sug-
gest that regulation by a single proximate upstream dam does not
necessarily translate into higher model performance in predicting
downstream hydrology.

Predicting hydrologic alteration is important for extending find-
ings for gaged stream reaches to ungauged reaches (Eng et al.,
2012). Given that discharge measurements are provided for only
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a small subset of streams (DeWeber et al., 2014) and biological
data are collected in many ungauged basins (USGS, 2014), models
predicting hydrologic alteration are important for augmenting
analyses evaluating ecological responses to altered stream flow
regimes (Eng et al., 2012). In addition, areas experiencing rapid
basin-wide dam development (Grumbine and Pandit, 2013), pre-
dicting hydrologic responses to dam development prior to con-
struction can be highly useful for environmental impact
assessments and basin planning. The statistical modeling frame-
work presented can aid in providing information for site-specific
assessments of hydrologic responses to dam regulation, such as
providing a priori estimates of parameters for reservoir operation
algorithms in process-based models.
Table A1
Comparison of support for best models and full models for each hydrologic response ind
variance explained. Class refers to the accuracy in classifying responses as negative or pos

Hydrologic index Best model

MA3 (N.STOR | class) + DIV + PURPOSE + Other Dist
Full model + (1 | class)

MA12 Full model + (1 | class) � DIST.DAM
Full model + (1 | class)

MA13 Full model + (1 | class) � CANALS
Full model + (1 | class)

MA14 Full model + (1 | class) �WITHD
Full model + (1 | class)

MA15 Full model + (1 | class) � DEV
Full model + (1 | class)

MA16 (L.STOR | class) + DIV + PURPOSE + Other dist
Full model + (1 | class)

MA17 Full model + (1 | class) � DIST.MDAM
Full model + (1 | class)

MA18 Local dam + Cum dam + (1 | class)
Full model + (1 | class)

MA19 Full model + (1 | class) � DIST.MDAM
Full model + (1 | class)

MA20 Local dam + Cum dam + (1 | class)
Full model + (1 | class)

MA21 Local dam + Cum dam + (1 | class)
Full model + (1 | class)

MA22 Full model + (1 | class) � DIST.DAM
Full model + (1 | class)

MA23 Full model + (1 | class) � CANALS
Full model + (1 | class)

MA41 Local dam + Other dist + (1 | class)
Full model + (1 | class)

ML17 (N.STOR | class) + DIV + PURPOSE + Other dist
Full model + (1 | class)

DL1 Full model + (1 | class) � DEV
Full model + (1 | class)

DL2 Full model + (1 | class) � DEV
Full model + (1 | class)

DL3 Full model + (1 | class) � DEV
Full model + (1 | class)

DL4 Full model + (1 | class) � DEV
Full model + (1 | class)

DL5 Full model + (1 | class) � L.STOR
Full model + (1 | class)

DL16 (L.STOR | class) + DIV + PURPOSE + Other Dist
Full model + (1 | class)

DL18 Full model + (1 | class) � N.STOR
Full model + (1 | class)

DH1 Full model + (1 | class) � PLANT
Full model + (1 | class)

DH2 Full model + (1 | class) �WITHD
Full model + (1 | class)

DH3 (L.STOR | class) + DIV + PURPOSE + Other Dist
Full model + (1 | class)

DH4 Full model + (1 | class) � CANALS
Full model + (1 | class)

DH5 Full model + (1 | class) � DIST.DAM
Full model + (1 | class)
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Appendix A

See Table A1.
ex using corrected Akaike’s Information Criterion (AICc) weights. R2 is provided as %
itive.

AICc Wt. R2 Class

0.989 0.29 0.81
0.001 0.28 0.81
0.416 0.19 0.63
0.154 0.19 0.63
0.443 0.18 0.65
0.199 0.18 0.65
0.346 0.21 0.61
0.172 0.21 0.60
0.359 0.18 0.64
0.142 0.18 0.64
0.278 0.24 0.62
0.051 0.22 0.61
0.172 0.15 0.64
0.061 0.15 0.64
0.262 0.17 0.66
0.050 0.18 0.66
0.266 0.20 0.68
0.095 0.20 0.68
0.511 0.19 0.72
0.032 0.19 0.72
0.233 0.14 0.68
0.061 0.15 0.68
0.232 0.17 0.68
0.186 0.18 0.68
0.492 0.20 0.69
0.260 0.20 0.69
0.159 0.23 0.89
0.050 0.24 0.89
1.000 0.26 0.67
0.000 0.22 0.66
0.250 0.15 0.63
0.089 0.15 0.63
0.270 0.16 0.65
0.097 0.16 0.65
0.278 0.18 0.66
0.100 0.18 0.66
0.234 0.18 0.68
0.084 0.18 0.68
0.251 0.15 0.67
0.117 0.16 0.69
0.899 0.20 0.73
0.004 0.21 0.73
0.204 0.10 0.72
0.071 0.10 0.72
0.169 0.20 0.72
0.060 0.20 0.73
0.154 0.15 0.69
0.056 0.15 0.69
0.547 0.14 0.66
0.027 0.12 0.65
0.237 0.12 0.58
0.090 0.12 0.58
0.266 0.13 0.56
0.110 0.13 0.56



Table A1 (continued)

Hydrologic index Best model AICc Wt. R2 Class

DH15 (N.STOR | class) + DIV + PURPOSE + Other Dist 0.999 0.15 0.70
Full model + (1 | class) 0.000 0.13 0.70

TA2 (L.STOR | class) + DIV + PURPOSE + Other Dist 1.000 0.18 0.62
Full model + (1 | class) 0.000 0.15 0.61

FL1 Full model + (1 | class) � PLANT 0.209 0.23 0.67
Full model + (1 | class) 0.080 0.23 0.67

FH1 Full model + (1 | class) � DIST.DAM 0.187 0.14 0.73
Full model + (1 | class) 0.066 0.14 0.73

FH6 Full model + (1 | class) � DIST.MDAM 0.137 0.11 0.83
Full model + (1 | class) 0.050 0.11 0.83

RA1 Full model + (1 | class) � DIST.DAM 0.162 0.18 0.73
Full model + (1 | class) 0.061 0.18 0.73

RA3 Full model + (1 | class) � IRRIG 0.220 0.20 0.66
Full model + (1 | class) 0.083 0.20 0.66

RA8 Full model + (1 | class) � PLANT 0.268 0.31 0.68
Full model + (1 | class) 0.106 0.31 0.69

D Full model + (1 | class) � D.DENS 0.193 0.19 NA
Full model + (1 | class) 0.070 0.19 NA
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jhydrol.2014.
08.053.
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