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This study introduces a mixed integer linear fractional programming (MILFP) method to optimize
conjunctive use of future surface water and groundwater resources under projected climate change sce-
narios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water
usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydro-
climate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled
Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model aver-
aging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections
due to uncertain future climate projections. Optimized conjunctive management solutions were investi-
gated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projec-
tions under climate change scenarios indicate that runoff will likely decrease in winter and increase in
other seasons. Results from the developed conjunctive management model with MILFP indicate that
the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance
groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through
conditional groundwater head constraints.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sustainable planning and management of limited water
resources has become a critical issue in light of decreasing water
availability, increasing water demands, and imbalance use of
surface water and groundwater. Water resources sustainability
largely depends on proper management and efficient utilization
of water (Fasakhodi et al., 2010). Conjunctive use of surface water
and groundwater resources provides a long-term solution for
improving water use efficiency (Singh, 2014).

However, managing future water resources often presents chal-
lenges due to uncertain future precipitation and runoff projections.
Hydrometeorological variability is likely to increase in the near
term (through 2050), leading to more intense, frequent climate
events (Mahoney et al., 2012). Uncertainty and variability increases
the complexity of the problems water resources decision makers
face (Najafi et al., 2011). Due to the inherent uncertainty in model-
ing, it is very important to ensure the robustness of potentially
expensive, irreversible adaptation decisions (Bastola et al., 2011).

Regional water resources undergoing climate change are typi-
cally studied through the modeling chain (Bosshard et al., 2013),
which includes elements such as (1) global circulation models
(GCMs), (2) future greenhouse gas emission (GHG) scenarios or
representative concentration pathways (RCPs), (3) downscaling
methods, and (4) hydrological models. Hydroclimate modeling
can address (1) the impacts of future climate change, (2) the unde-
fined effects of climate change on the availability of water
resources, and (3) the resilience of water resources management
(Bastola et al., 2011). The Intergovernmental Panel on Climate
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Change (IPCC) Fifth Assessment Report (AR5) suggested using mul-
timodel ensembles for detection, attribution, impact, and adapta-
tion studies (Stocker et al., 2010). It is evident that the
uncertainty across different climate models is relatively larger than
other sources of uncertainties (Weiland et al., 2012). Therefore, for
water resources planning, the multimodel ensemble approach will
be a more appropriate method than relying on a single model. Mul-
timodel ensemble approaches exploit the diversity of multiple
competent modeling chains and their advantages in describing
hydrologic processes. This study adopts Bayesian model averaging
(BMA) (Hoeting et al., 1999) as a multimodel ensemble method to
account for projected inflow uncertainty for the conjunctive-use
modeling under climate change projection uncertainty. BMA
accounts for model uncertainty by producing a weighted probabil-
ity density function using the posterior probability of each partic-
ipating model while better performing predictions receive higher
weights (Min et al., 2007; Liang et al., 2013). BMA has been applied
to uncertainty analysis in weather forecasting and hydrologic pre-
diction (Ajami et al., 2006; Duan et al., 2007; Min et al., 2007; Vrugt
and Robinson, 2007; Zhang et al., 2009; Dong et al., 2013), and cli-
mate change impact analysis (Raftery and Zheng, 2003; Tebaldi
et al., 2005; Buser et al., 2009; Smith et al., 2009; Liang et al., 2013).

Although projecting future runoff and quantifying its underly-
ing uncertainty have been studied extensively in the literature, lit-
tle work has been done to incorporate these results in future
decision making for the conjunctive management of surface water
and groundwater resources. Coupled simulation-optimization
models have been used extensively for conjunctive management
of groundwater and surface water resources, as indicated in the lit-
erature for complex water allocation problems. These coupled
simulation-optimization models have aided in developing sustain-
able operational strategies (Mantoglou, 2003; Bhattacharjya and
Datta, 2005; Ramesh and Mahesha, 2008; Bazargan-Lari et al.,
2009; Mohammad Reazpour Tabari and Yazdi, 2014). For ground-
water and multi-reservoir management, linear programming (LP),
dynamic programming (DP), and genetic algorithm (GA) are the
most commonly applied optimization approaches (Singh, 2012).
Katsifarakis and Petala (2006) implemented both LP and differen-
tial evolution (DE) to manage a coastal karstic groundwater aqui-
fer. Tamer Ayvaz and Karahan (2008) compared the performance
of LP, NLP, DP, and GA in identifying unknown groundwater pump-
ing well locations and pumping rates. The studies concluded that
all optimization methods yield comparable results, while LP
acquires the least computational expense and calculation time.

This study introduces a mixed integer linear fractional pro-
gramming (MILFP) method for the conjunctive use of surface water
and groundwater under uncertain future inflow projection. Frac-
tional programming (FP) is the optimization of a ratio of two func-
tions (Schaible, 1981). FP naturally addresses a multi-objective
management problem by maximizing the benefit-cost ratio in
water resources planning and management (Lara and Stancu-
Minasian, 1999; Fasakhodi et al., 2010; Zhu and Huang, 2011;
Ren et al., 2013; Guo et al., 2014). MILFP is a linear form of FP with
integer decision variables, which optimizes the ratio of two mixed
integer linear objective functions subject to mixed integer linear
constraints. Due to its ability to be transformed to a mixed integer
linear program (MILP), MILFP provides a computationally simple
and efficient optimization framework to maximize one objective
while minimizing its effect on resources through its ratio objective
function.

In the following sections, MILFP is developed for a conjunctive-
use study of surface water and groundwater for the Sparta aquifer
in the northern Louisiana, USA. This study uses a hybrid downscal-
ing method to develop future climate change scenarios based on 11
Coupled Model Intercomparison Project Phase 5 (CMIP5) GCMs.
The downscaled precipitation and temperature are used as inputs
to the Variable Infiltration Capacity (VIC) model (Liang et al.,
1994) to project future natural runoff and reservoir inflow. The
BMA is used to estimate the ensemble inflow to reservoirs. The
projected demand withdrawals from reservoirs and groundwater
pumping rates are then presented and discussed.
2. Methodology

2.1. Study area

The Sparta aquifer shown in Fig. 1a is the major source of water
supply for Arkansas and northern Louisiana (McKee and Clark,
2003). From 1980 to 2010, the groundwater from the aquifer in
northern Louisiana was withdrawn at a rate of 246,052–
264,979 m3/day, or �65–70 million gallons per day (MGD)
(Sargent, 2012). Over pumping has caused the groundwater level
to decline by an average of 0.3–0.9 m/year (1–3 ft/year), and it
has also caused saltwater intrusion (McKee and Clark, 2003). Areas
with groundwater levels below the top of the Sparta aquifer are of
particular concern (LaDNR, 2015). A wastewater treatment facility
(Sparta Re-use Facility in West Monroe) was contructed to con-
serve the Sparta aquifer. Since 2013, the facility has offset ground-
water pumping by �18,927 m3/day (5 MGD), providing reclaimed
water to a major industrial user. Four reservoirs—Bayou D’Arbonne
Lake, Lake Claiborne, Corney Lake, and Lake Bistineau (Fig. 1a)—
supply fresh water to major cities in northern Louisiana (Meyer
et al., 2002). These reservoirs are used primarily for recreation
(US Army Corps of Engineers [USACE], 2015). Three reservoirs are
located in the Bayou D’Arbonne subbasin (US Geological Survey
[USGS] 8-digit hydrologic unit code [HUC8] 08040206), and
another reservoir is in the Loggy Bayou subbasin (HUC8 –
11140203).
2.2. Conjunctive surface water and groundwater allocation model

To assess the effect of climate change on planning and manage-
ment of reservoir operations and groundwater pumping, a con-
junctive management model (Fig. 2) is developed based on
fractional programming. It links a groundwater model and a hydro-
logic model. The objectives are to maximize groundwater with-
drawal and to minimize reservoir storage deficit subject to a
water balance equation for network flow, water demand con-
straints, and groundwater head constraints. Specifically, future
reservoir inflow projections are derived from the VIC model given
downscaled climate projections. BMA is adopted to derive ensem-
ble mean and variance of reservoir inflows. Detailed information
for the conjunctive management model is provided as follows.

The water supply network for northern Louisiana (Fig. 1b)
includes six major cities: Farmerville (node D1, Union Parish), Mon-
roe (node D2, including West Monroe in Ouachita Parish), Ruston
(node D3, Lincoln Parish), Arcadia (node D4, Bienville Parish),
Homer (node D5, Claiborne Parish), and Minden (node D6, Webster
Parish). Their average monthly water demands are shown in
Table 1 (Sargent, 2012). Farmerville and Monroe are designed to
receive groundwater and surface water from Bayou D’Arbonne
Lake (node S2) located downstream from Corney Lake (node S1)
and Lake Claiborne (node S3). The Sparta Re-use Facility has pro-
vided 18,927 m3/day (5 MGD) to Monroe since 2013. Ruston is
designed to receive groundwater and surface water from Bayou
D’Arbonne Lake, Lake Claiborne (node S3), and Lake Bistineau (node
S4). Arcadia, Minden, and Homer are near or in the recharge zone of
the Sparta aquifer and are designed to use surface water only. The
water demands and reclaimed water supply are assumed to be
constant throughout the study.



Fig. 1. (a) Areal extent of Sparta aquifer at top-right figure where solid circles are pumping wells (modified from McKee and Clark, 2003) and watershed boundaries for the
four lakes. Open circles in the main map are USGS groundwater observation wells and open triangles are USGS streamflow gauges. Solid circles in the main map are selected
pumping centers. (b) Proposed water supply network.

Fig. 2. Flowchart of the conjunctive management model.

Table 1
Water demands at demand nodes (Sargent, 2012).

City Farmerville (D1) Monroe (D2) Ruston (D3) Arcadia (D4) Homer (D5) Minden (D6)

Demand (m3/day) 13,892 184,047 32,365 16,315 8858 26,763
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Groundwater is mainlywithdrawn from sixmajor pumping cen-
ters (Fig. 1) located in Ouachita parish (four pumping centers for
Monroe, node W2), Union parish (one pumping center for Farmer-
ville, node W1) and Lincoln parish (one pumping center for Ruston,
node W3). Multiple USGS observation wells are shown Fig. 1a. To
restore the Sparta aquifer to its predevelopment condition, this
study assigns the 1975 groundwater level as the target groundwater
level at four USGS observationwells in Ouachita, and it assigns 1985
groundwater level as the target level at one USGS observation well
in Lincoln and another in Union. Pumping rates from other smaller
wells in northern Louisiana are assumed to remain unchanged.

The network conjunctive water use model is simulated at
monthly time steps. The maximum and minimum reservoir
storages are the physical limits from the USACE National Dam
Inventory (USACE, 2015). Not all reservoirs are regulated for high
flow seasons due to their recreational use. No capacity limit is
given to the arcs in the proposed water supply network. The lower
bound of reservoir spill is assigned to be zero due to the lack of
environmental flow information. Evaporation from reservoir sur-
face and groundwater exchange along the reservoir boundaries is
also assumed to be negligible due to lack of data.

2.3. Hydrologic modeling

To simulate the natural inflow to reservoirs, the semi-
distributed VIC hydrologic model (Liang et al., 1994, 1996) is used.
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VIC is a process-based hydrological model that simulates evapo-
transpiration, snow pack, surface runoff, baseflow, and other
hydrologic mechanisms within a watershed. Within each grid cell,
the water and energy balances are solved for multiple elevation
bands and vegetation types, allowing the model to capture the sub-
grid variability of these land surface features. An external two-
dimensional horizontal routing algorithm can then be used to esti-
mate streamflow at a specified location (Lohmann et al., 1998). The
VIC model is widely used for climate change impact assessment
and can be used for either single basins (e.g., Christensen et al.,
2004) or continental-scale studies (e.g., Vetter et al., 2015;
Hagemann et al., 2013). However, it should also be noted that
the current version of VIC model does not simulate groundwater.

Pre-organized VIC input data from Oubeidillah et al. (2014) are
used to simulate surface hydrology for Bayou D’Arbonne (HUC8 –
08040206) and Loggy Bayou (HUC8 – 11140203) subbasins. The
VICmodel is implemented at 1/24� (�4 km) grid cell resolutionwith
three-hour time steps. Five elevation bands are considered to incor-
porate the variabilitywithin the grids in precipitation and elevation.
Based on the aggregated elevation from the National Elevation
Dataset (NED) (Gesch et al., 2002) and also flow direction from the
National Hydrography Dataset Plus (NHDPlus) (USEPA and USGS,
2010), flow direction grids in northern Louisiana are further gener-
ated for streamflow routing to the locations of reservoirs, and mul-
tiple USGS gauges. Oubeidillah et al. (2014) provide further details
on VIC model setup, input parameters, and model calibration.

To evaluate the performance of VIC model, a control run simu-
lation is conducted by using the Daymet dataset (Thornton et al.,
1997) as the driving meteorological forcings. Both simulated total
runoff (i.e., baseflow plus surface runoff) and routed streamflow
were compared to the USGS WaterWatch runoff dataset
(Brakebill et al., 2011) and the National Water Information System
(NWIS) gauge observation (Fig. 3). In general, VIC-simulated total
runoff for both subbasins shows strong similarity to the USGS
WaterWatch runoff shown in Fig. 3a and b. Although runoff in
the Loggy Bayou subbasin showed larger bias (NSE = 0.55), runoff
Fig. 3. Comparison of VIC simulated monthly runoff (mm) to USGS WaterWatch monthly
of VIC simulated monthly streamflow (m3/s) to USGS streamflow at gauges (c) Bayou Do
near Lillie, LA (Station Number: 07366200). NSE = Nash–Sutcliffe efficiency, RMSE = root
in the Bayou D’Arbonne subbasin was well simulated
(NSE = 0.80), suggesting that the overall surface water balance is
reasonably simulated. Similarly, VIC-simulated streamflow at
Bayou Dorcheat near Springhill, LA (in Loggy Bayou subbasin),
and at Little Corney Bayou near Lillie, LA (in Bayou D’Arbonne sub-
basin), also match well with the observed streamflow shown in
Fig. 3c and d. The locations of the two streamflow gauges are
shown in Fig. 1a. The VIC model is then used to simulate the pro-
jected future reservoir inflow under multiple sets of future climate
change projections (see Section 2.6).

2.4. Groundwater modeling

The USGS Sparta groundwater model (McKee and Clark, 2003) is
adopted to simulate groundwater head in the Sparta aquifer from
1980 to 2010. Future pumping rates for 2011–2025 are assumed
to be the same as 2010 pumping rates. McKee and Clark (2003)
describes detailed model development. The monthly groundwater
head is simulated, while the yearly groundwater pumping rates are
optimized. This yields a 90 � 90 response matrix for the successive
MILP problem. This study adopts the one-side finite difference
method to calculate the sensitivities using 91 MODFLOW parallel
runs on a supercomputer at Louisiana State University.

2.5. Fractional programming for conjunctive management

To balance the use between surface water from reservoirs and
groundwater from pumping, a conjunctive management model is
proposed based on fractional programming. The proposed conjunc-
tivemanagement model aims tomaximize the ratio of two compet-
ing objectives, total groundwater withdrawal to the total deficit of
reservoir storages with respect to their maximum storages. Because
groundwater is generally cheaper and its quality is generally better
than reservoir water, maximizing the ratio will maximize ground-
water usage and minimize reservoir storage loss. This is especially
important for reservoirs not used for flood control. To keep aquifers
runoff for (a) Loggy Bayou subbasin and (b) Bayou D’Arbonne subbasin. Comparison
rcheat near Springhill, LA (Station Number: 07348700) and (d) Little Corney Bayou
mean square error, and R2 = square of correlation coefficient.
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for sustainable use, the study imposes groundwater head con-
straints at several control points, thus limiting groundwater with-
drawal. The demand deficit caused by limiting groundwater
pumping can be offset by using the reservoir water. The conjunctive
management model is formulated as the following nonlinear frac-
tional programming problem:

Maximize
P

n1
TQ nP

t1
TðSmax � StÞ þ b

; ð1Þ

subject to

htþ1 P ht þ D1 if ht < htarget

htþ1 P ht � D2 if ht P htarget

(
; ð2Þ

Stþ1 ¼ St þ It þ
X
j2IN

SpðjÞ
t � Rt � Spt � Et ; ð3Þ

X
i2OUT

xðiÞ
t �

X
j2IN

xðjÞ
t ¼ bt; ð4Þ

Xmin 6 X ¼ ½Q n; St;Rt; Spt ;xt�T 6 Xmax; ð5Þ

Xmin ¼ ½Qmin; Smin;Rmin; Spmin;xmin�T ; and ð6Þ

Xmax ¼ ½Qmax; Smax;Rmax; Spmax;xmax�T : ð7Þ
The vector X includes all state and decision variables:

Q n, the vector of groundwater pumping rate for different pump-
ing wells during stress period n, St , the vector of storage for dif-
ferent reservoirs at time t,
Rt , the vector of demand withdrawal from different reservoirs
during time period t, Spt , the vector of spill from different reser-
voirs during time period t, and xt , the vector of water flow in a
water supply network during time period t.
Xmin and Xmax are the vectors of the lower and upper bounds of
the variables.
ht is the vector of groundwater head at control locations at time
t, which is a function of the pumping rate Q n.
htarget is the vector of target groundwater head at control
locations.
D1 and D2 are the policy parameters, which are non-negative
coefficients.
It is the vector of natural inflow to reservoirs during time period
t.
Et is the vector of evaporation from reservoir surface during
time period t.
bt is the source/sink nodes in the water supply network during
time period t.
b ¼ 1 is a non-negative constant to prevent the denominator
value from being a very small number.
T is the transpose operator.
1 is the vector of ones.

Each constraint is explained below. The nonlinearity is the
result of constraint (2), where groundwater head is a nonlinear
function of pumping rate.

2.5.1. Conditional head constraint
To avoid significant decline in groundwater levels, the condi-

tional head constraint (2) is introduced with two non-negative
coefficients,D1 and D2, as policy parameters to control groundwater
levels around or above specified target levels at control locations.
To handle constraint (2), a unit step function,

Hðht � htargetÞ ¼ 1; if ht P htarget
; 0; otherwise; ð8Þ
is introduced to make the conditional head constraint more concise:

htþ1 � ht þ ðD1 þ D2ÞHðht � htargetÞ P D1: ð9Þ
This conditional constraint is especially suitable for managing

depleting aquifers since it enforces groundwater level increase at
least D1 units for the next time step if current groundwater level
is lower than the specified target level; otherwise, it allows
groundwater level to decrease up to D2 units for the next time step.
D1 and D2 values are subject to analysts’ choice. D1 ¼ 0:305 m (1 ft)
and D2 ¼ 0:610 m (2 ft) were assigned in Eq. (2) for this study since
they made target heads at selected observation wells achievable in
a 15-year period. Moreover, the coefficient values avoid high
groundwater level fluctuations over time.

Directly dealing with constraint (9) in the optimization problem
is not straightforward. In Appendix A, this study introduces an
equivalent set of mixed-integer nonlinear constraints to represent
constraint (9). By using the first-order Taylor series expansion to
linearize groundwater head with respect to pumping rate, the con-
ditional head constraint (9) is ultimately replaced by a set of
mixed-integer linear constraints.

2.5.2. Water balance equation at reservoirs
Eq. (3) is the water balance equation at reservoirs. The termP

j2INSp
ðjÞ
t is the total spill from upstream reservoirs during time

period t. The USGS gauge record indicates that the initial reservoir
storages were full at the beginning of 2011. The VIC hydrologic
model, driven by the downscaled temperature and precipitation
from 11 ensemble members of future climate change projections,
was used to simulate the natural inflow It entering the reservoirs.
The development of future reservoir inflow scenarios is discussed
further in the later sections.

2.5.3. Water supply network
Eq. (4) is the water balance equation at junction and demand

nodes in a water supply network given that reservoirs are the
source of surface water and pumping wells are the source of

groundwater to the demand nodes.
P

i2OUTx
ðiÞ
t is the total outflow

and
P

j2INx
ðjÞ
t is the total inflow for each node. For a junction node

that diverts water to other nodes, bt is zero. For a demand node,
the total inflow is the sum of surface water and groundwater, the
total outflow is zero, and bt is water demand (negative value).

2.5.4. Transformation to successive MILP
Following Appendix A, a successive MILFP problem is

formulated. Further transformation is conducted in Appendix B
to transform the successive MILFP problem into a successive
mixed-integer linear programming (MILP) problem by the
Charnes-Cooper transformation technique (Charnes and Cooper,
1962). This study terminates the successive procedure when the
sum of absolute head differences at control locations between
iterations is less than a threshold, i.e.,

kht Q kþ1
n

� �
� ht Q k

n

� �
k1 6 g; ð10Þ

where k � k1 is the 1-norm, and g is the convergence threshold. For a
15-year network flow optimization, the successive MILFP problem
has 4320 decision variables and 8190 constraints. After transforma-
tion, the successive MILP problem has 4321 decision variables and
8551 constraints. The IBM ILOG CPLEX Optimizer (IBM, 2009) is
used to solve the MILP problem.

2.6. Future hydroclimate projections

A hybrid downscaling method (i.e., both dynamical and statisti-
cal) is used in this study to develop possible future climate change
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projections based on the CMIP5 GCM outputs. The coarser resolu-
tion GCM outputs (�150 km) are first dynamically downscaled to
18 km resolution using the International Centre for Theoretical
Physics Regional Climate Model version 4 (RegCM4) (Giorgi et al.,
2012). The RegCM4-simulated temperature and precipitation are
then statistically interpolated and bias-corrected to 1/24�
(�4 km) resolution for the follow-up hydrologic simulation. This
study selects 11 CMIP5 GCMs under the Representative Concentra-
tion Pathway (RCP) 8.5 emission scenario (ACCESS1-0, BCC-CSM1-
1, CCSM4, CMCC-CM, FGOALS-G2, GFDL-ESM2M, IPSL-CM5A-LR,
MIROC5, MPI-ESM-MR, MRI-CGCM3, and Nor-ESM1-M). This
hybrid downscaling approach has been described in several recent
hydroclimate studies (Ashfaq et al., 2010, 2013).

For dynamical downscaling, RegCM4 is forced at its lateral and
lower boundaries every 6 h using atmospheric and sea-surface
temperature fields from the GCMs. The RegCM4 simulations are
carried out at 18 km horizontal grid spacing with 18 vertical levels
that cover a domain similar to Diffenbaugh et al. (2011). Each set of
experiments consists of 41 years in the baseline (1965–2005) and
41 years in the near future (2010–2050) periods with the first year
disregarded for model spin up.

While there are over 50 GCMs contributed to CMIP5, only less
than one-third archived three-dimensional atmospheric fields at
a sub-daily timescale, which is necessary for dynamical downscal-
ing. Therefore, the selection of GCMs in this study is mainly based
on data availability. After balancing the resource limitation and the
need of multimodel projections, 11 ensemble members—one from
each different CMIP5 GCM—are selected in this study. The RCP 8.5
scenario is selected because it is closest to the current observed
trajectory. The performance and skills of each selected GCM are
not specifically evaluated in this study.

After RegCM4 simulation, the 18 km daily precipitation and
maximum/minimum surface temperatures are statistically inter-
polated and bias corrected to 1/24� (�4 km) resolution using a
quantile-based bias correction method (Ashfaq et al., 2010,
2013). The 1/24� (�4 km) resolution 1966–2005 monthly precipi-
tation and temperature from the Parameter-elevation Regressions
on Independent Slopes Model (PRISM) (Daly et al., 2008) are used
as the historic observation for bias correction. Since most hydro-
logic models are highly sensitive to minor variations in meteoro-
logical forcings, several studies have suggested that statistical
bias correction should be performed for the dynamically down-
scaled precipitation and temperature before conducting hydrologic
simulation for better accuracy and lower bias (Rojas et al., 2011;
Ahmed et al., 2013).

2.7. Reservoir inflow projection by Bayesian model averaging

Driven by the downscaled temperature and precipitation, the
VIC model is used to simulate an ensemble of 11 sets of baseline
(1966–2005) and future (2011–2050) runoff and streamflow pro-
jections. While all dynamically downscaled precipitation and tem-
perature have been bias-corrected by PRISM (i.e., having
climatological averages similar to PRISM), the VIC-simulated runoff
and streamflow during the baseline period can still vary due to dif-
ferences in the interannual variability of precipitation and temper-
ature of each ensemble member. Therefore, instead of assigning
equal weight to each model, this study adopts the Bayesian model
averaging approach to derive an average runoff projection from
multiple sets of reservoir inflow projections. Higher weights are
assigned to climate models that produce more similar interannual
runoff variability to the USGS WaterWatch runoff.

Inflows have been considered to follow a lognormal distribution
(Vogel and Stedinger, 1987; Vogel et al., 1999). In this study, BMA
is used to calculate mean reservoir log-inflow projection as
follows:
YtðDÞ ¼
X
p

YtðD;MpÞPrðMpjDÞ; ð11Þ

where Yt ¼ lnðItÞ is the vector of natural logarithms of reservoir
inflows,

YtðDÞ is the vector of mean reservoir projected log-inflows at
time t given data D,
YtðD;MpÞ is the vector of mean reservoir projected log-inflows
by hydroclimate model Mp, at time t given data D, and
PrðMpjDÞ is the posterior model probability for the hydroclimate
model Mp, which is the model weight for the hydroclimate
model Mp. The variances of the reservoir projected log-inflows
are as follows:
r2ðYtjDÞ ¼
X
p

r2ðYt jD;MpÞPrðMpjDÞ

þ
X
p

ðYtðD;MpÞ � YtðDÞÞ2PrðMpjDÞ; ð12Þ

where r2ðYtjD;MpÞ are the log-inflow variances using the hydrocli-
mate modelMp. The internal uncertainty of individual hydroclimate
models creates the first term in Eq. (12). The mean inflow projection
uncertainty using different hydroclimate models creates the second
term in Eq. (12).

Calculating YtðD;MpÞ can be challenging if full model parameter
range of hydroclimate model Mp is taken into account. Following
the suggestion of Draper (1995), YtðD;MpÞ is approximated by

YtðD; b̂p;MpÞ, where b̂p is the maximum likelihood estimate of

model parameters b̂p of the hydroclimate model Mp. Therefore,
YtðD;MpÞ is approximated by the log-runoff output of the cali-
brated VIC model with climate forcing from a GCM.

Calculating the model weight PrðMpjDÞ is another challenging
task due to the calculation of the marginal likelihood in the Bayes’
theorem. Many studies have contributed to the discussions of how
PrðMpjDÞ be calculated. This study does not elaborate on these dis-
cussions, but simply adopts the Bayesian information criterion
(Schwarz, 1978) and the variance window (Tsai and Li, 2008) to
approximate the marginal likelihood function. The Bayesian infor-
mation criterion (BIC) is

BICp ¼
X
i

ln Qp;i � ln Qobs
i

� �2

r2
p;i

þ N ln 2pþ kp ln ðNÞ; ð13Þ

where
ln Qp;i is the ith log-runoff projected by the hydroclimate model
Mp,

ln Qobs
i is the ith USGS WaterWatch runoff data,

r2
p;i is the error variance for the ith runoff data,

N is the number runoff data, and kp is the number of unknown
model parameters. The model weight can be approximated by
the following equation:
PrðMpjDÞ �
exp � 1

2a ðBICp � BICminÞ
� �

P
q exp � 1

2aðBICq � BICminÞ
� � ; ð14Þ

where a is the scaling factor, and BICmin is the minimum BIC value
of all hydroclimate models. Tsai and Li (2008) provide the details on
implementation. Climate models that produce interannual runoff
variability similar to the USGS WaterWatch log-runoffs will have
smaller BIC values and higher model weights.
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3. Results and discussion

3.1. Comparison with other CMIP5 models

Since the adopted hydroclimate ensemble was restricted to 11
GCMs, their relative change compared to other CMIP5 members
was evaluated (Fig. 4). RegCM-RCP8.5 represents the 11 down-
scaled models used in this study. A total of 97 statistically down-
scaled climate projections under four emission scenarios (RCPs
2.6, 4.5, 6.0, and 8.5) are obtained from the bias correction spatial
disaggregation (BCSD) data archive (Brekke et al., 2013). The aver-
age annual percentage change of precipitation and the degree
change of temperature from the 1966–2005 baseline to the
2011–2050 near future period in the study area are calculated.
The ensemble median of the 97 BCSD downscaled projections is
marked by a dashed line (Fig. 4). All models project a consistent
increase in temperature ranging from +0.5 �C to �+2.5 �C, and
�15% to +20% change in precipitation is projected with relatively
large intermodel variability. In terms of the multimodel median,
the 11 climate projections used in this study are around �0.5 �C
cooler and +5% wetter than the BCSD in the study area. Although
the highest emission scenario is chosen, the 11 simulations are
not biased toward the warming side. This is because the difference
among various emission scenarios only becomes significant after
2030 (Peters et al., 2013), so climate variability remains the main
governing factor in the near-term 21st century projection period.
Fig. 4. Scatter plots of projected mean annual temperature and precipitation changes f
scenarios (RCP 2.6, 4.5, 6.0, and 8.5; green symbols) and the 11 RegCM4 simulations (b
temperature (C) and percentage change of average precipitation (%) from 1966–2005 base
obtained from the BCSD data archive (Brekke et al., 2013). (For interpretation of the refer
article.)

Table 2
Future seasonal runoff changes (2011–2049) in the Bayou D’Arbonne subbasin (HUC8 – 0

Model name Change in average runoff (%)

DJF MAM JJA

ACCESS1-0 �53.1 �1.9 12.0
BCC-CSM1-1 �25.3 18.3 12.2
CCSM4 �32.7 68.1 19.2
CMCC-CM �11.2 16.4 24.3
FGOALS-G2 �112.2 �52.6 17.7
GFDL-ESM2M 28.1 11.0 13.7
IPSL-CM5A-LR 6.9 30.5 19.4
MIROC5 �53.1 9.2 26.4
MPI-ESM-MR 22.4 5.8 15.9
MRI-CGCM3 �0.1 44.3 28.8
Nor-ESM1-M �41.6 �25.8 16.6

BMA �19.3 42.6 20.4
3.2. Runoff projections under climate change scenarios

Changes in near future seasonal runoffs (2011–2049) projected
by different hydroclimate ensemble members with respect to the
historical seasonal WaterWatch runoffs (1980–2005) for Bayou
D’Arbonne subbasin were shown in Table 2. These changes indicate
a decrease in near future runoff in winter (DJF). This is consistent
with other studies (Seager et al., 2013; Milly et al., 2005;
Mulholland et al., 1997) that projected an overall decrease in mean
runoff for the southern region of the US; however, the decrease
would be greater than 10% in this region. On the other hand, near
future runoff would increase in summer (JJA) and fall (SON) signif-
icantly. Near future runoff is likely to increase in spring (MAM).
Although not shown here, similar near future runoff changes were
also obtained for Loggy Bayou subbasin. The near future mean
annual runoffs due to different GCMs could decrease by
180.74 mm, or they could increase by 90.75 mm in Loggy Bayou
subbasin as compared to the historical mean annual runoffs, and
there could be a 164.58 mm decrease and 133.11 mm increase in
Bayou D’Arbonne subbasin. The hydroclimate modeling results
show considerable spread of possible future outcomes.

The model weights for the hydroclimate ensembles were
obtained based on their similar interannual variability to the USGS
WaterWatch log-runoffs for the subbasins during 1980–2005 (14).
The probability plot shown in Fig. 5 indicates that the monthly run-
offs can be reasonably assumed to be log normally distributed. As
or 97 statistically downscaled CMIP5 GCM projections (BCSD) under four emission
lue symbols) used in this study. Change is defined as the degree change of average
line to 2011–2050 future periods in the study area. The 97 climate projections were
ences to colour in this figure legend, the reader is referred to the web version of this

8040206) compared to the USGS WaterWatch runoff (1980–2005).

Change in median runoff (%)

SON DJF MAM JJA SON

25.8 �67.0 �3.3 14.5 16.4
36.7 �52.6 32.2 17.1 19.3
24.2 �75.8 91.1 29.4 19.5
29.1 �23.4 32.3 28.2 29.3
0.9 �134.4 �28.5 33.3 7.9
17.8 �8.3 13.6 19.2 15.2
25.0 6.2 46.9 25.4 29.5
24.5 �68.4 19.3 29.9 33.9
23.6 16.4 22.0 27.0 22.6
19.0 �14.3 46.8 32.2 22.2
14.3 �45.6 �25.9 30.2 14.5

29.1 �47.6 57.2 34.2 29.5



Fig. 5. Cumulative probability of simulated runoff from 11 hydro-climate models and the USGS WaterWatch data in 1980–2005.

Table 3
Model weights and BIC values based on their similarity of interannual runoff
variability to the USGS WaterWatch dataset during the historical period (1980–2005).

Model name Ensemble member Model weights BIC

ACCESS1-0 r1p1i1 0.072 597.61
BCC-CSM1-1 r1p1i1 0.127 578.68
CCSM4 r6p1i1 0.461 535.86
CMCC-CM r1p1i1 0.011 661.05
FGOALS-G2 r1p1i1 0.038 619.09
GFDL-ESM2M r1p1i1 0.032 624.11
IPSL-CM5A-LR r1p1i1 0.020 640.70
MIROC5 r1p1i1 0.086 591.57
MPI-ESM-MR r1p1i1 0.001 728.84
MRI-CGCM3 r1p1i1 0.004 690.75
Nor-ESM1-M r1p1i1 0.148 573.74
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shown in Table 3, RegCM4-CCSM4 has the highest similarity to
WaterWatch log-runoffs, and RegCM4-MPI-ESM-MR has the least
similarity. BMA means of log-runoffs were obtained by using Eq.
(11), and log runoffs were obtained by using Eq. (12) to determine
95% confidence interval. After back-transformation, most of the
USGS WaterWatch runoffs are within the 95% confidence interval
as shown Fig. 6a and b for the historical period.

The BMA means and the 95% confidence interval of near future
runoffs are shown in Fig. 6c and d. The results indicate high runoff
projection uncertainty in years 2017, 2019, 2023 and 2024. By
comparing with the average annual runoff of the historical period,
the BMA results indicate an increase of 66.95 mm/year for Bayou
D’Arbonne subbasin and an increase of 61.89 mm/year for Loggy
Bayou subbasin in the near future period. This is contrary to the
previous findings (Seager et al., 2013; Milly et al., 2005;
Mulholland et al., 1997) that projected runoff decrease in the US
southern region.
3.3. Inflow projections under climate change scenarios

Future monthly inflows to Lake Bistineau were estimated the
same as the runoffs for Loggy Bayou subbasin (Fig. 6c). Future
monthly inflows to Bayou D’Arbonne Lake, Lake Claiborne, and
Corney Lake were calculated from the fractional runoffs of Bayou
D’Arbonne subbasin (see Fig. 6d) based on the ratios of their
drainage areas to those in the Bayou D’Arbonne subbasin area.
The watershed areas shown in Fig. 1a are 4157 km2 for Bayou
D’Arbonne Lake, 334 km2 for Lake Claiborne, 1109 km2 for Corney
Lake, and 3768 km2 for Lake Bistineau. Based on the BMA means
and variances of log-runoffs under the Gaussian assumption, this
study investigates the optimized conjunctive management solu-
tions under the future low inflow projections at 50%, 10%, and
2.5% cumulative probability level as shown in Fig. 7.

3.4. Impact of conjunctive use on reservoirs

Noticeable deficits in the reservoir storages would be produced
at the 2.5% low inflow, as shown in Fig. 8. The storage capacity of
Corney Lake is relatively very small and is not shown here.
Over the 15-year span (2011–2025), Corney Lake would lose
18 million m3 (4612 MG) in storage, Bayou D’Arbonne Lake would
lose 4547 million m3 (1,201,123 MG), Lake Claiborne would lose
899 million m3 (237,557 MG), and Lake Bistineau would lose
1954 million m3 (516,071 MG). Storage would decrease signifi-
cantly at Lakes Claiborne and Bistineau starting in the summer of
2023 because the 2.5% low inflow would not be able to meet
demands without significantly using storages. Storage loss would
not be noticeable at the 10% and 50% cumulative low inflow
probability levels.

Low inflows would result in low spills from the reservoirs, as
shown in Fig. 9. For the 2.5% low inflow, Bayou D’Arbonne Lake
would spill only 0.94% of its annual inflows on average to Ouachita
River. Lake Bistineau would spill only 2.55% of its annual inflows on
average to Red River. These low spills might not be favorable to
environmental flows in some months during 2011–2025. However,
the 50% low inflows would allow Bayou D’Arbonne Lake to spill
60.29% of its annual inflows on average to the Ouachita River. Lake
Bistineau would spill 56.7% of its annual inflows on average to Red
River. These high spills would satisfy environmental flows.

3.5. Impact of conjunctive use on sparta aquifer

Due to sufficient surface water (inflows plus reservoir storages)
to meet water demand in 2011–2025, the same optimized ground-
water pumping rates resulted, regardless of considering 2.5%, 10%,
or 50% low inflow (Fig. 10). The annual mean of future optimized
pumpage for pumping center Ou-W1 would decrease by 45.55%,



Fig. 6. BMA mean monthly runoff (mm) and 95% confidence interval for (a) Loggy Bayou subbasin, (b) Bayou D’Arbonne subbasin for historical period (1980–2005), (c) Loggy
Bayou subbasin, and (d) Bayou D’Arbonne subbasin for future period (2011–2025).

Fig. 7. Low inflow projections at 2.5%, 10%, and 50% cumulative probability levels for (a) Corney Lake, (b) Bayou D’Arbonne Lake, (c) Lake Claiborne, and (d) Lake Bistineau for
future period (2011–2025).
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Fig. 8. Optimized storage distributions with 2.5%, 10%, and 50% low inflow projections for future period (2011–2025).

Fig. 9. Optimized spills from the four reservoirs for future period (2011–2025).
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and at Ou-W2 it would decrease by 99.22% as compared to
decreases in 2001–2010. However, the annual mean of future
optimized pumpage for pumping center Ou-W3 would increase
by 18.62%, and Ou-W4 it would increase by 20.55%. Overall, con-
junctive management shows that the annual mean pumpage in
Ouachita would decrease from 2,4491,614 m3/day (6470 MGD
from 2001 to 2010) to 18,029,916 m3/day (4763 MGD from 2011
to 2025), a 26.38% reduction. This could be offset by the surface
water. The annual mean of optimized pumpage at L-W1 in Lincoln
would decrease by 19.41% as compared to the decreases in 2001–
2010. The annual mean of optimized pumpage at U-W1 in Union
would increase by 195.77%.

Using D1 ¼ 0:305 m (1 ft) and D2 ¼ 0:610 m (2 ft) in Eq. (2), as
shown in Fig. 11, groundwater levels at the selected control points



Fig. 10. Pumping rates for Ouachita wells (a) for 2001–2010 and (b) 2011–2025 optimized. Pumping rates for Union and Lincoln wells (c) for 2001–2010 and (d) 2011–2025
optimized.

Fig. 11. Groundwater levels (m) above NGVD 1929 at six selected USGS wells for future period (2011–2025).
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would reach or pass their target levels by 2025. By significantly
reducing pumpage in Ouachita, groundwater level at U-26 would
still increase even though the pumping rate increases for U-W1.
In summary, the target groundwater levels could be achieved
by only decreasing 13,703 m3/day (3.62 MGD) from the annual
mean pumpage during 2001–2010. This pumpage reduction is



Fig. 12. Optimized surface water and groundwater supplies given 2.5%, 10%, and 50% low inflow projections for (a) Monroe (water re-use supply in West Monroe is
subtracted from the total demand) and (b) Farmerville.

Fig. 13. Optimized surface water and groundwater supplies under 2.5%, 10%, and 50% low reservoir inflow projections for Ruston and Arcadia.
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significantly lower than the 68,137 m3/day (18 MGD) reduction
from the Sparta aquifer recommended by Meyer et al. (2002).

3.6. Optimized surface water allocations

The optimized annual groundwater and monthly surface water
allocations for Monroe and Farmerville are shown in Fig. 12. Mon-
roe would be a significant user of Bayou D’Arbonne Lake, which
would use an average of 132,489 m3/day (35 MGD) during 2011–
2025. About 18% of water demand for Farmerville would come
from Bayou D’Arbonne Lake after 2012. Homer would be con-
stantly supplied by Lake Claiborne. The conjunctive-use model
suggests that Minden would be constantly supplied by Lake Bisti-
neau, although it might receive surface water from Lake Claiborne.
The majority of surface water to Ruston would be shifted from
Bayou D’Arbonne Lake to Lake Bistineau, as shown in Fig. 13a–c
as inflows decreases. The majority of surface water for Arcadia
would come from Lake Bistineau, as shown in Fig. 13d and f. As
inflows decrease, Arcadia would receive less water from Lake Clai-
borne. For the 2.5% low inflow case, Lake Bistineau would supply
100% of the water to Arcadia.
The result indicates that Lake Bistineau would be a reliable sur-
face water supply source to Ruston and Arcadia. At the 2.5% low
inflow, Bayou D’Arbonne Lake would not be able to contribute
major surface water to Ruston because it would need to fulfill
the water demand for Monroe and Farmerville first. Similarly, Lake
Claiborne would not be able to supply surface water to Arcadia, as
it would need to fulfill the water demand for Homer first.

4. Conclusion

The MILFP provides a simple, computationally efficient
approach to optimize conflicting objectives. For a conjunctive
use, the successive MILFP is suitable for optimizing groundwater
and surface water uses by integrating a groundwater model and
a multi-reservoir water supply network model through the
response matrix approach. This study expands the Charnes-
Cooper transformation technique to include integer variables so
that the optimal solution for the successive MILFP problem can
be efficiently obtained by solving a successive MILP problem. The
proposed conjunctive-use model for the case study successfully
demonstrates this technique.
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Future inflow estimates to the reservoirs rely on future runoff
projections, which present the key uncertainty to the conjunctive
management. Through the BMA analysis on an ensemble of 11 sets
of downscaled hydroclimate projections, this study found that the
near future runoff (2011–2049) for northern Louisiana would be
likely to decrease in winter, but it would be likely to increase in
spring, summer and fall. Overall, northern Louisiana would likely
be in a wetter condition in the near future.

Due to the projected wetter condition, the conjunctive-use
modeling result indicates that water demands in northern Louisi-
ana for the future period (2011–2025) would be satisfied even with
a 2.5% low inflow projection and a rising groundwater level in the
Sparta aquifer. Future surface water would counterbalance the
groundwater pumping reduction. It was found that a significant
reduction in groundwater withdrawal in Ouachita would elevate
the overall groundwater level for northern Louisiana. The
conjunctive-use model showed that the target groundwater levels
would be met by 2025 by reducing annual groundwater pumpage
by 13,703 m3/day (3.62 MGD).

Through the conjunctive-use model, it was determined that
Lake Bistineau would be a reliable future surface water source to
Ruston and Arcadia given the proposed network configuration.
For the 2.5% low inflow projection, Bayou D’Arbonne Lake would
not be able to provide a large amount of surface water to Ruston,
as it would have to first satisfy Farmerville and Monroe demands.
Similarly, Lake Claiborne would not be able to provide a noticeable
amount of surface to Arcadia at a very low projected inflow
because it would have to satisfy Homer demands first.

Acknowledgements

This work was supported in part by the Louisiana Board of
Regents under award number LEQSF(2012-15)-RD-A-03 and by
the U.S. Geological Survey under Grant/Cooperative Agreement
No. G11AP20082 (through LWRRI). The authors acknowledge Brian
Clark of USGS for providing the Sparta groundwater model, Pierre
Sargent of USGS for providing water use data for northern Louisi-
ana, and the Louisiana Sparta Ground Water Commission for pro-
viding technical reports. The LSU Center for Computation &
Technology (CCT) and the High Performance Computing (HPC)
are acknowledged for providing computing resources and technical
assistance. This paper was coauthored by employees of the Oak
Ridge National Laboratory, managed by UT Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department of Energy.
Accordingly, the publisher, by accepting the article for publication,
acknowledges that the United States government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others
to do so, for United States government purposes.
Appendix A. Conditional head constraint linearization

This study introduces an equivalent set of inequality constraints
(A1)–(A3) to represent the conditional head constraint (9) as
follows:

htþ1 � ht � diagðD1 þ D2Þut P �D2; ðA1Þ
ht þ diagðhtarget � LhÞut P htarget
; and ðA2Þ
ht þ diagðUh � htargetÞut < Uh; ðA3Þ

where ut is the vector of binary variables at time t, Lh is the vector of
the lower bound for groundwater head at control locations, and Uh

is the vector of the upper bound for groundwater head at control
locations. diagð�Þ makes a vector become a diagonal matrix. ut ¼ 0
indicates ht P htarget and ut ¼ 1 indicates ht < htarget.

Using the first-order Taylor series expansion (Peralta et al.,
1991; Theodossiou, 2004), groundwater head, ht , is linearized with
respect to pumping rate Q n as follows:

hkþ1
t � hk

t þ Jkt Q kþ1
n � Q k

n

� �
; ðA4Þ

where Jkt ¼ @ht=@Q jQ¼Q k
n
is the Jacobian matrix, Q k

n is the vector of

pumping rate at the kth iteration, and hk
t ¼ ht Q k

n

� �
. Substituting

Eq. (A4) into constraints (A1)–(A3), linear constraints at the kth iter-
ation are obtained:

Jktþ1 � Jkt
� �

Q kþ1
n � diagðD1 þ D2Þut

P �D2 � hk
tþ1 � hk

t

� �
þ Jktþ1 � Jkt
� �

Q k
n; ðA5Þ

JktQ
kþ1
n þ diagðhtarget � LhÞut P htarget � hk

t þ JktQ
k
n; and ðA6Þ

JktQ
kþ1
n þ diagðUh � htargetÞut 6 Uh � hk

t þ JktQ
k
n; ðA7Þ

where Jktþ1, J
k
t , and Q k

n are known values from the previous iteration,

k, and Q kþ1
n are the decision variables (unknown) to be determined

at the current iteration, k + 1. A procedure is needed to successively
improve the solution until a stopping criterion is met.

Appendix B. Transformation of MILFP to MILP

Following the details provided in Appendix A, the fractional
programming problem can be rewritten into a successive mixed-
integer linear fractional programming problem (MILFP) as follows:

Maximize
P

n1
TQ kþ1

nP
t1

TðSmax � StÞ þ b
; ðB1Þ

subject to

Jktþ1 � Jkt
� �

Q kþ1
n � diagðD1 þ D2Þut

P �D2 � hk
tþ1 � hk

t

� �
þ Jktþ1 � Jkt
� �

Q k
n; ðB2Þ

JktQ
kþ1
n þ diagðhtarget � LhÞut P htarget � hk

t þ JktQ
k
n; ðB3Þ

JktQ
kþ1
n þ diagðUh � htargetÞut 6 Uh � hk

t þ JktQ
k
n; ðB4Þ

Stþ1 ¼ St þ It þ
X
j2IN

SpðjÞ
t � Rt � Spt � Et ; and ðB5Þ

X
i2OUT

xðiÞ
t �

X
j2IN

xðjÞ
t ¼ bt : ðB6Þ

Following Charnes and Cooper (1962), a new variable is
introduced:

w ¼ 1P
t1

TðSmax � StÞ þ b
; ðB7Þ

where w P 0. Then, all variables are multiplied by w, resulting in
new variables, as follows:

�X ¼ ½Q n; St;Rt ; Spt; �xt �T ¼ ½Q nw; Stw;Rtw; Sptw;xtw�T ; and ðB8Þ

�ut ¼ utw ¼ f0;wg: ðB9Þ
By multiplying the MILFP constraints with w and substituting

them with new variables, the original MIFLP problem is trans-
formed to the following mixed-integer nonlinear programming
problem (MINLP):
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Maximize
X
n

1TQkþ1
n ; ðB10Þ

subject to

Jktþ1 � Jkt
� �

Q kþ1
n � diagðD1 þ D2Þ�ut

þ D2 þ hk
tþ1 � hk

t

� �
� Jktþ1 � Jkt
� �

Q k
n

h i
w P 0; ðB11Þ

JktQ
kþ1
n þ diagðhtarget � LhÞ�ut � htarget � hk

t þ JktQ
k
n

h i
w P 0; ðB12Þ

JktQ
kþ1
n þ diagðUh � htargetÞ�ut � Uh � hk

t þ JktQ
k
n

h i
w 6 0; ðB13Þ

Stþ1 ¼ St þ Itwþ
X
j2IN

SpðjÞ
t � Rt � Spt � Etw; and ðB14Þ

X
i2OUT

�xðiÞ
t �

X
j2IN

�xðjÞ
t ¼ btw: ðB15Þ

To ensure that Eq. (B7) is satisfied in the new formation,
another constraint is imposed:X
t

1TðSmaxw� StÞ þ bw ¼ 1: ðB16Þ

The wmultiplication also applies to the bound constraints of the
variables in Eq. (B8):

X� Xminw P 0 and X� Xmaxw 6 0: ðB17Þ
The discontinuous variables product term �ut in the constraints

(B11)–(B13) imposes additional nonlinearity. To address with the
discontinuous variables, the following constraints are added:

�ut � Uut 6 0; ðB18Þ

Lut � �ut 6 0; ðB19Þ

w� �ut þ Uut 6 U; and ðB20Þ

�ut � Lut � w 6 �L; ðB21Þ

so that �ut can be treated as continuous variables. L is a negative
value, and U is an upper bound of w. By adding the constraints
(B18)–(B21), the successive MINLP problem becomes a successive
mixed-integer linear programming (MILP) problem.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jhydrol.2016.06.
021. These data include Google maps of the most important areas
described in this article.
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